Вычисление аннуитетного платежа в Microsoft Excel
Прежде, чем брать заем, неплохо было бы рассчитать все платежи по нему. Это убережет заёмщика в будущем от различных неожиданных неприятностей и разочарований, когда выяснится, что переплата слишком большая. Помочь в данном расчете могут инструменты программы Excel. Давайте выясним, как рассчитать аннуитетные платежи по кредиту в этой программе.
Расчет оплаты
Прежде всего, нужно сказать, что существует два вида кредитных платежей:
- Дифференцированные;
- Аннуитетные.
При дифференцированной схеме клиент вносит в банк ежемесячно равную долю выплат по телу кредита плюс платежи по процентам. Величина процентных выплат каждый месяц уменьшается, так как уменьшается тело займа, с которого они рассчитываются. Таким образом и общий ежемесячный платеж тоже уменьшается.
При аннуитетной схеме используется несколько другой подход. Клиент ежемесячно вносит одинаковую сумму общего платежа, который состоит из выплат по телу кредита и оплаты процентов. Изначально процентные взносы насчитываются на всю сумму займа, но по мере того, как тело уменьшается, сокращается и начисление процентов. Но общая сумма оплаты остается неизменной за счет ежемесячного увеличения величины выплат по телу кредита. Таким образом, с течением времени удельный вес процентов в общем ежемесячном платеже падает, а удельный вес оплаты по телу растет. При этом сам общий ежемесячный платеж на протяжении всего срока кредитования не меняется.
Как раз на расчете аннуитетного платежа мы и остановимся. Тем более, это актуально, так как в настоящее время большинство банков используют именно эту схему. Она удобна и для клиентов, ведь в этом случае общая сумма оплаты не меняется, оставаясь фиксированной. Клиенты всегда знают сколько нужно заплатить.
Этап 1: расчет ежемесячного взноса
Для расчета ежемесячного взноса при использовании аннуитетной схемы в Экселе существует специальная функция – ПЛТ. Она относится к категории финансовых операторов. Формула этой функции выглядит следующим образом:
Как видим, указанная функция обладает довольно большим количеством аргументов. Правда, последние два из них не являются обязательными.
Аргумент «Ставка» указывает на процентную ставку за конкретный период. Если, например, используется годовая ставка, но платеж по займу производится ежемесячно, то годовую ставку нужно разделить на 12 и полученный результат использовать в качестве аргумента. Если применяется ежеквартальный вид оплаты, то в этом случае годовую ставку нужно разделить на 4 и т.д.
«Кпер» обозначает общее количество периодов выплат по кредиту. То есть, если заём берется на один год с ежемесячной оплатой, то число периодов считается 12, если на два года, то число периодов – 24. Если кредит берется на два года с ежеквартальной оплатой, то число периодов равно 8.
«Пс» указывает приведенную стоимость на настоящий момент. Говоря простыми словами, это общая величина займа на начало кредитования, то есть, та сумма, которую вы берете взаймы, без учета процентов и других дополнительных выплат.
«Бс» — это будущая стоимость. Эта величина, которую будет составлять тело займа на момент завершения кредитного договора. В большинстве случаев данный аргумент равен «0», так как заемщик на конец срока кредитования должен полностью рассчитаться с кредитором. Указанный аргумент не является обязательным. Поэтому, если он опускается, то считается равным нулю.
Аргумент «Тип» определяет время расчета: в конце или в начале периода. В первом случае он принимает значение «0», а во втором – «1». Большинство банковских учреждений используют именно вариант с оплатой в конце периода. Этот аргумент тоже является необязательным, и если его опустить считается, что он равен нулю.
Теперь настало время перейти к конкретному примеру расчета ежемесячного взноса при помощи функции ПЛТ. Для расчета используем таблицу с исходными данными, где указана процентная ставка по кредиту (12%), величина займа (500000 рублей) и срок кредита (24 месяца). При этом оплата производится ежемесячно в конце каждого периода.
- Выделяем элемент на листе, в который будет выводиться результат расчета, и щелкаем по пиктограмме «Вставить функцию», размещенную около строки формул.
- Производится запуск окошка Мастера функций. В категории «Финансовые» выделяем наименование «ПЛТ» и жмем на кнопку «OK».
- После этого открывается окно аргументов оператора ПЛТ.
В поле «Ставка» следует вписать величину процентов за период. Это можно сделать вручную, просто поставив процент, но у нас он указан в отдельной ячейке на листе, поэтому дадим на неё ссылку. Устанавливаем курсор в поле, а затем кликаем по соответствующей ячейке. Но, как мы помним, у нас в таблице задана годовая процентная ставка, а период оплаты равен месяцу. Поэтому делим годовую ставку, а вернее ссылку на ячейку, в которой она содержится, на число 12, соответствующее количеству месяцев в году. Деление выполняем прямо в поле окна аргументов.
В поле «Кпер» устанавливается срок кредитования. Он у нас равен 24 месяцам. Можно занести в поле число 24 вручную, но мы, как и в предыдущем случае, указываем ссылку на месторасположение данного показателя в исходной таблице.
В поле «Пс» указывается первоначальная величина займа. Она равна 500000 рублей. Как и в предыдущих случаях, указываем ссылку на элемент листа, в котором содержится данный показатель.
В поле «Бс» указывается величина займа, после полной его оплаты. Как помним, это значение практически всегда равно нулю. Устанавливаем в данном поле число «0». Хотя этот аргумент можно вообще опустить.
В поле «Тип» указываем в начале или в конце месяца производится оплата. У нас, как и в большинстве случаев, она производится в конце месяца. Поэтому устанавливаем число «0». Как и в случае с предыдущим аргументом, в данное поле можно ничего не вводить, тогда программа по умолчанию будет считать, что в нем расположено значение равное нулю.
После того, как все данные введены, жмем на кнопку «OK».
- После этого в ячейку, которую мы выделили в первом пункте данного руководства, выводится результат вычисления. Как видим, величина ежемесячного общего платежа по займу составляет 23536,74 рубля. Пусть вас не смущает знак «-» перед данной суммой. Так Эксель указывает на то, что это расход денежных средств, то есть, убыток.
- Для того, чтобы рассчитать общую сумму оплаты за весь срок кредитования с учетом погашения тела займа и ежемесячных процентов, достаточно перемножить величину ежемесячного платежа (23536,74 рубля) на количество месяцев (24 месяца). Как видим, общая сумма платежей за весь срок кредитования в нашем случае составила 564881,67 рубля.
- Теперь можно подсчитать сумму переплаты по кредиту. Для этого нужно отнять от общей величины выплат по кредиту, включая проценты и тело займа, начальную сумму, взятую в долг. Но мы помним, что первое из этих значений уже со знаком «-». Поэтому в конкретно нашем случае получается, что их нужно сложить. Как видим, общая сумма переплаты по кредиту за весь срок составила 64881,67 рубля.
Урок: Мастер функций в Эксель
Этап 2: детализация платежей
А теперь с помощью других операторов Эксель сделаем помесячную детализацию выплат, чтобы видеть, сколько в конкретном месяце мы платим по телу займа, а сколько составляет величина процентов. Для этих целей чертим в Экселе таблицу, которую будем заполнять данными. Строки этой таблицы будут отвечать соответствующему периоду, то есть, месяцу. Учитывая, что период кредитования у нас составляет 24 месяца, то и количество строк тоже будет соответствующим. В столбцах указана выплата тела займа, выплата процентов, общий ежемесячный платеж, который является суммой предыдущих двух колонок, а также оставшаяся сумма к выплате.
- Для определения величины оплаты по телу займа используем функцию ОСПЛТ, которая как раз предназначена для этих целей. Устанавливаем курсор в ячейку, которая находится в строке «1» и в столбце «Выплата по телу кредита». Жмем на кнопку «Вставить функцию».
- Переходим в Мастер функций. В категории «Финансовые» отмечаем наименование «ОСПЛТ» и жмем кнопку «OK».
- Запускается окно аргументов оператора ОСПЛТ. Он имеет следующий синтаксис:
Как видим, аргументы данной функции почти полностью совпадают с аргументами оператора ПЛТ, только вместо необязательного аргумента «Тип» добавлен обязательный аргумент «Период». Он указывает на номер периода выплаты, а в нашем конкретном случае на номер месяца.
Заполняем уже знакомые нам поля окна аргументов функции ОСПЛТ теми самыми данными, что были использованы для функции ПЛТ. Только учитывая тот факт, что в будущем будет применяться копирование формулы посредством маркера заполнения, нужно сделать все ссылки в полях абсолютными, чтобы они не менялись. Для этого требуется поставить знак доллара перед каждым значением координат по вертикали и горизонтали. Но легче это сделать, просто выделив координаты и нажав на функциональную клавишу F4. Знак доллара будет расставлен в нужных местах автоматически. Также не забываем, что годовую ставку нужно разделить на 12.
- Но у нас остается ещё один новый аргумент, которого не было у функции ПЛТ. Этот аргумент «Период». В соответствующее поле устанавливаем ссылку на первую ячейку столбца «Период». Данный элемент листа содержит в себе число «1», которое обозначает номер первого месяца кредитования. Но в отличие от предыдущих полей, в указанном поле мы оставляем ссылку относительной, а не делаем из неё абсолютную.
После того, как все данные, о которых мы говорили выше, введены, жмем на кнопку «OK».
- После этого в ячейке, которую мы ранее выделили, отобразится величина выплаты по телу займа за первый месяц. Она составит 18536,74 рубля.
- Затем, как уже говорилось выше, нам следует скопировать данную формулу на остальные ячейки столбца с помощью маркера заполнения. Для этого устанавливаем курсор в нижний правый угол ячейки, в которой содержится формула. Курсор преобразуется при этом в крестик, который называется маркером заполнения. Зажимаем левую кнопку мыши и тянем его вниз до конца таблицы.
- В итоге все ячейки столбца заполнены. Теперь мы имеем график выплаты тела займа помесячно. Как и говорилось уже выше, величина оплаты по данной статье с каждым новым периодом увеличивается.
- Теперь нам нужно сделать месячный расчет оплаты по процентам. Для этих целей будем использовать оператор ПРПЛТ. Выделяем первую пустую ячейку в столбце «Выплата по процентам». Жмем на кнопку «Вставить функцию».
- В запустившемся окне Мастера функций в категории «Финансовые» производим выделение наименования ПРПЛТ. Выполняем щелчок по кнопке «OK».
- Происходит запуск окна аргументов функции ПРПЛТ. Её синтаксис выглядит следующим образом:
Как видим, аргументы данной функции абсолютно идентичны аналогичным элементам оператора ОСПЛТ. Поэтому просто заносим в окно те же данные, которые мы вводили в предыдущем окне аргументов. Не забываем при этом, что ссылка в поле «Период» должна быть относительной, а во всех других полях координаты нужно привести к абсолютному виду. После этого щелкаем по кнопке «OK».
- Затем результат расчета суммы оплаты по процентам за кредит за первый месяц выводится в соответствующую ячейку.
- Применив маркер заполнения, производим копирование формулы в остальные элементы столбца, таким способом получив помесячный график оплат по процентам за заём. Как видим, как и было сказано ранее, из месяца в месяц величина данного вида платежа уменьшается.
- Теперь нам предстоит рассчитать общий ежемесячный платеж. Для этого вычисления не следует прибегать к какому-либо оператору, так как можно воспользоваться простой арифметической формулой. Складываем содержимое ячеек первого месяца столбцов «Выплата по телу кредита» и «Выплата по процентам». Для этого устанавливаем знак «=» в первую пустую ячейку столбца «Общая ежемесячная выплата». Затем кликаем по двум вышеуказанным элементам, установив между ними знак «+». Жмем на клавишу Enter.
- Далее с помощью маркера заполнения, как и в предыдущих случаях, заполняем колонку данными. Как видим, на протяжении всего действия договора сумма общего ежемесячного платежа, включающего платеж по телу займа и оплату процентов, составит 23536,74 рубля. Собственно этот показатель мы уже рассчитывали ранее при помощи ПЛТ. Но в данном случае это представлено более наглядно, именно как сумма оплаты по телу займа и процентам.
- Теперь нужно добавить данные в столбец, где будет ежемесячно отображаться остаток суммы по кредиту, который ещё требуется заплатить. В первой ячейке столбца «Остаток к выплате» расчет будет самый простой. Нам нужно отнять от первоначальной величины займа, которая указана в таблице с первичными данными, платеж по телу кредита за первый месяц в расчетной таблице. Но, учитывая тот факт, что одно из чисел у нас уже идет со знаком «-», то их следует не отнять, а сложить. Делаем это и жмем на кнопку Enter.
- А вот вычисление остатка к выплате после второго и последующих месяцев будет несколько сложнее. Для этого нам нужно отнять от тела кредита на начало кредитования общую сумму платежей по телу займа за предыдущий период. Устанавливаем знак «=» во второй ячейке столбца «Остаток к выплате». Далее указываем ссылку на ячейку, в которой содержится первоначальная сумма кредита. Делаем её абсолютной, выделив и нажав на клавишу F4. Затем ставим знак «+», так как второе значение у нас и так будет отрицательным. После этого кликаем по кнопке «Вставить функцию».
- Запускается Мастер функций, в котором нужно переместиться в категорию «Математические». Там выделяем надпись «СУММ» и жмем на кнопку «OK».
- Запускается окно аргументов функции СУММ. Указанный оператор служит для того, чтобы суммировать данные в ячейках, что нам и нужно выполнить в столбце «Выплата по телу кредита». Он имеет следующий синтаксис:
В качестве аргументов выступают ссылки на ячейки, в которых содержатся числа. Мы устанавливаем курсор в поле «Число1». Затем зажимаем левую кнопку мыши и выделяем на листе первые две ячейки столбца «Выплата по телу кредита». В поле, как видим, отобразилась ссылка на диапазон. Она состоит из двух частей, разделенных двоеточием: ссылки на первую ячейку диапазона и на последнюю. Для того, чтобы в будущем иметь возможность скопировать указанную формулу посредством маркера заполнения, делаем первую часть ссылки на диапазон абсолютной. Выделяем её и жмем на функциональную клавишу F4. Вторую часть ссылки так и оставляем относительной. Теперь при использовании маркера заполнения первая ячейка диапазона будет закреплена, а последняя будет растягиваться по мере продвижения вниз. Это нам и нужно для выполнения поставленных целей. Далее жмем на кнопку «OK».
- Итак, результат остатка кредитной задолженности после второго месяца выводится в ячейку. Теперь, начиная с данной ячейки, производим копирование формулы в пустые элементы столбца с помощью маркера заполнения.
- Помесячный расчет остатков к оплате по кредиту сделан за весь кредитный период. Как и положено, на конец срока эта сумма равна нулю.
Таким образом, мы произвели не просто расчет оплаты по кредиту, а организовали своеобразный кредитный калькулятор. Который будет действовать по аннуитетной схеме. Если в исходной таблице мы, например, поменяем величину займа и годовой процентной ставки, то в итоговой таблице произойдет автоматический пересчет данных. Поэтому её можно использовать не только один раз для конкретного случая, а применять в различных ситуациях для расчета кредитных вариантов по аннуитетной схеме.
Урок: Финансовые функции в Excel
Как видим, при помощи программы Excel в домашних условиях можно без проблем рассчитать общий ежемесячный кредитный платеж по аннуитетной схеме, используя для этих целей оператор ПЛТ. Кроме того, при помощи функций ОСПЛТ и ПРПЛТ можно произвести расчет величины платежей по телу кредита и по процентам за указанный период. Применяя весь этот багаж функций вместе, существует возможность создать мощный кредитный калькулятор, который можно будет использовать не один раз для вычисления аннуитетного платежа.

Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.
Отблагодарите автора, поделитесь статьей в социальных сетях.

Помогла ли вам эта статья?
ДАНЕТПоделиться статьей в социальных сетях:
Источник: https://lumpics.ru/calculation-annuity-payment-excel/Калькулятор расчета кредита в Excel и формулы ежемесячных платежей
Excel – это универсальный аналитическо-вычислительный инструмент, который часто используют кредиторы (банки, инвесторы и т.п.) и заемщики (предприниматели, компании, частные лица и т.д.).
Быстро сориентироваться в мудреных формулах, рассчитать проценты, суммы выплат, переплату позволяют функции программы Microsoft Excel.
Как рассчитать платежи по кредиту в Excel
Ежемесячные выплаты зависят от схемы погашения кредита. Различают аннуитетные и дифференцированные платежи:
- Аннуитет предполагает, что клиент вносит каждый месяц одинаковую сумму.
- При дифференцированной схеме погашения долга перед финансовой организацией проценты начисляются на остаток кредитной суммы. Поэтому ежемесячные платежи будут уменьшаться.
Чаще применяется аннуитет: выгоднее для банка и удобнее для большинства клиентов.
Расчет аннуитетных платежей по кредиту в Excel
Ежемесячная сумма аннуитетного платежа рассчитывается по формуле:
А = К * S
где:
- А – сумма платежа по кредиту;
- К – коэффициент аннуитетного платежа;
- S – величина займа.
Формула коэффициента аннуитета:
К = (i * (1 + i)^n) / ((1+i)^n-1)
- где i – процентная ставка за месяц, результат деления годовой ставки на 12;
- n – срок кредита в месяцах.
В программе Excel существует специальная функция, которая считает аннуитетные платежи. Это ПЛТ:
- Заполним входные данные для расчета ежемесячных платежей по кредиту. Это сумма займа, проценты и срок.
- Составим график погашения кредита. Пока пустой.
- В первую ячейку столбца «Платежи по кредиту» вводиться формула расчета кредита аннуитетными платежами в Excel: =ПЛТ($B$3/12; $B$4; $B$2). Чтобы закрепить ячейки, используем абсолютные ссылки. Можно вводить в формулу непосредственно числа, а не ссылки на ячейки с данными. Тогда она примет следующий вид: =ПЛТ(18%/12; 36; 100000).



Ячейки окрасились в красный цвет, перед числами появился знак «минус», т.к. мы эти деньги будем отдавать банку, терять.
Расчет платежей в Excel по дифференцированной схеме погашения
Дифференцированный способ оплаты предполагает, что:
- сумма основного долга распределена по периодам выплат равными долями;
- проценты по кредиту начисляются на остаток.
Формула расчета дифференцированного платежа:
ДП = ОСЗ / (ПП + ОСЗ * ПС)
где:
- ДП – ежемесячный платеж по кредиту;
- ОСЗ – остаток займа;
- ПП – число оставшихся до конца срока погашения периодов;
- ПС – процентная ставка за месяц (годовую ставку делим на 12).
Составим график погашения предыдущего кредита по дифференцированной схеме.
Входные данные те же:

Составим график погашения займа:

Остаток задолженности по кредиту: в первый месяц равняется всей сумме: =$B$2. Во второй и последующие – рассчитывается по формуле: =ЕСЛИ(D10>$B$4;0;E9-G9). Где D10 – номер текущего периода, В4 – срок кредита; Е9 – остаток по кредиту в предыдущем периоде; G9 – сумма основного долга в предыдущем периоде.
Выплата процентов: остаток по кредиту в текущем периоде умножить на месячную процентную ставку, которая разделена на 12 месяцев: =E9*($B$3/12).
Выплата основного долга: сумму всего кредита разделить на срок: =ЕСЛИ(D9<=$B$4;$B$2/$B$4;0).
Итоговый платеж: сумма «процентов» и «основного долга» в текущем периоде: =F8+G8.
Внесем формулы в соответствующие столбцы. Скопируем их на всю таблицу.

Сравним переплату при аннуитетной и дифференцированной схеме погашения кредита:

Красная цифра – аннуитет (брали 100 000 руб.), черная – дифференцированный способ.
Формула расчета процентов по кредиту в Excel
Проведем расчет процентов по кредиту в Excel и вычислим эффективную процентную ставку, имея следующую информацию по предлагаемому банком кредиту:

Рассчитаем ежемесячную процентную ставку и платежи по кредиту:

Заполним таблицу вида:

Комиссия берется ежемесячно со всей суммы. Общий платеж по кредиту – это аннуитетный платеж плюс комиссия. Сумма основного долга и сумма процентов – составляющие части аннуитетного платежа.
Сумма основного долга = аннуитетный платеж – проценты.
Сумма процентов = остаток долга * месячную процентную ставку.
Остаток основного долга = остаток предыдущего периода – сумму основного долга в предыдущем периоде.
Опираясь на таблицу ежемесячных платежей, рассчитаем эффективную процентную ставку:
- взяли кредит 500 000 руб.;
- вернули в банк – 684 881,67 руб. (сумма всех платежей по кредиту);
- переплата составила 184 881, 67 руб.;
- процентная ставка – 184 881, 67 / 500 000 * 100, или 37%.
- Безобидная комиссия в 1 % обошлась кредитополучателю очень дорого.
Эффективная процентная ставка кредита без комиссии составит 13%. Подсчет ведется по той же схеме.
Расчет полной стоимости кредита в Excel
Согласно Закону о потребительском кредите для расчета полной стоимости кредита (ПСК) теперь применяется новая формула. ПСК определяется в процентах с точностью до третьего знака после запятой по следующей формуле:
- ПСК = i * ЧБП * 100;
- где i – процентная ставка базового периода;
- ЧБП – число базовых периодов в календарном году.
Возьмем для примера следующие данные по кредиту:

Для расчета полной стоимости кредита нужно составить график платежей (порядок см. выше).

Нужно определить базовый период (БП). В законе сказано, что это стандартный временной интервал, который встречается в графике погашения чаще всего. В примере БП = 28 дней.
Далее находим ЧБП: 365 / 28 = 13.
Теперь можно найти процентную ставку базового периода:

У нас имеются все необходимые данные – подставляем их в формулу ПСК: =B9*B8
Примечание. Чтобы получить проценты в Excel, не нужно умножать на 100. Достаточно выставить для ячейки с результатом процентный формат.
ПСК по новой формуле совпала с годовой процентной ставкой по кредиту.
Скачать кредитный калькулятор в Excel
Таким образом, для расчета аннуитетных платежей по кредиту используется простейшая функция ПЛТ. Как видите, дифференцированный способ погашения несколько сложнее.
Аннуитетные платежи по кредиту. Вычисление аннуитетного платежа в Microsoft Excel
Что такое аннуитетные платежи при кредитовании? Чем они отличаются от дифференцированных? Как производятся расчеты сумм при данной схеме? Ответим на данные вопросы, ссылаясь на информацию, что актуальна в 2019 году.
Дорогие читатели! Статья рассказывает о типовых способах решения юридических вопросов, но каждый случай индивидуален. Если вы хотите узнать, как решить именно Вашу проблему - обращайтесь к консультанту:
ЗАЯВКИ И ЗВОНКИ ПРИНИМАЮТСЯ КРУГЛОСУТОЧНО и БЕЗ ВЫХОДНЫХ ДНЕЙ .
Это быстро и БЕСПЛАТНО !
Многие заемщики при оформлении кредита сталкиваются с таким понятием, как аннуитетные платежи. Выясним, что это значит, и какие формулы используются при расчете суммы.
Общие моменты
Все кредиты имеют определенные особенности, которые стоит изучить заемщикам, ведь в противном случае придется выплачивать банковской организации дополнительные средства.
При заключении соглашения о кредитовании включается немало пунктов, в том числе и показатель максимальной суммы кредита, размер первого взноса, комиссия, санкции в случае досрочного погашения задолженности и т. д.
Некоторые условия соглашения действуют только некоторое время или вообще разовые, а некоторые действительны в течение всего периода актуальности документа.
Например, платить за то, что ваша заявка будет рассмотрена, нужно только раз, штрафы грозят при досрочном погашении только временно, а комиссию за оказание услуг берут, пока не будет произведено последние расчеты по кредиту.
Есть также несколько видов расчетов по . Могут производиться аннуитетные платежи и дифференцированные.
Что это такое
Аннуитет – понятие широкое, и описывает оно схему погашения долга по кредитам. Подразумевается:
Теперь же рассмотрим более конкретно понятие аннуитета при оформлении кредита.
Аннуитетным называется платеж, который устанавливают в равных суммах через определенные временные промежутки.
Заемщику нужно будет платить каждый месяц одну и ту же сумму. При этом не будет иметь значение, какой остаток долга.
Такие графики платежей в настоящее время устанавливаются финансовыми организациями довольно часто.
С первого взгляда, схема проста. Но есть немало недостатков:
Такая схема не очень выгодна клиенту, поскольку придется переплатить немалую сумму. Да и те проценты, которые выплачивались наперед, банковская организация не будет возвращать.
Именно поэтому следует учитывать данные особенности аннуитетных платежей, и узнать, как произвести расчеты еще до оформления кредита.
Аннуитетный вариант погашения задолженности по кредиту очень удобен банковским организациям. Ведь сумма процентов в течение всего периода кредитования будет начислена на первичную сумму оформленного кредита.
В чем разница с дифференцированным
Описания всех кредитных продуктов содержат сведения о том, какие платежи нужно производить каждый месяц – аннуитетные или дифференцированные.
Банки могут сами указать метод погашения задолженности, а могут предоставить выбор самому заемщику. В отличие от аннуитетного платежа, дифференцированный ежемесячно изменяется.
Он уменьшается, потому что сумма гасится равными долями, и величина процентов определяется каждый месяц на остаточную сумму.
Плюс аннуитетной схемы расчета в том, что заемщик платит постоянно неизменную сумму в конкретные сроки. Никакие дополнительные цифры ему знать не нужно.
При дифференцированных расчетах придется все время уточнять, какая сумма должна быть оплачена в следующем месяце, так как будет содержать различные показатели.
В первое время при дифференцированных платежах сумма, которую стоит возвращать в банк, больше, чем при иной схеме.
А значит, устанавливается требования для оформления кредита – большая платежеспособность гражданина минимум на 20%, чем у лица, что погашает долг равными частями.
Но позднее ситуация изменится, так как платеж уменьшится. К примеру, 2 заемщика взяли кредит на 12 месяцев на 100 000 рублей. Годовые составляют 17 процентов. Один должен рассчитываться по аннуитетной схеме, второй – по дифференцированной.
Первому нужно будет ежемесячно платить 9120,48 руб. Платежи же второго будут меняться каждый месяц. Сначала заемщик заплатит 9750 руб. но постепенно сумма платежа уменьшится до 8451,43 руб. Разница в переплате двух граждан составит 263,84 руб.
Все заемщики стараются выбирать ту схему кредитования, которая им будет максимально выгодна. А поэтому не получится однозначно утверждать, какие именно платежи будут более экономными.
Ведь каждая из описанных схем имеет свои нюансы, которые подытожим таблицей:
Дифференцированная | Аннуитетная |
Сумма убывающая | Сумма платежа неизменная в течение всего срока |
Размер первого взноса большой | Величина первого взноса меньше |
Редко применяется | Данный вариант чаще используется банками |
Условие кредитования – прибыль заемщика должна быть больше на 20 процентов | Требования к доходу не такие строгие |
Основной долг быстро уменьшается | Снижение основного долга происходит постепенно, тогда, как величина процентов увеличивается |
Выгодно погашать долг досрочно | Досрочное погашение предполагает дополнительные затраты |
Банки реже одобряют оформление кредита за счет того, что не все граждане имеют достаточную сумму дохода | Кредит с выплатами по данной схеме проще взять |
Так что при оценивании выгоды стоит учитывать все особенности и параметры кредитных линий.
Необходимо учесть, какие вы имеете ежемесячные расходы, особенно в том случае, если кредит будет оформляться на длительный период.
Если ипотека оформляется на 20 лет, клиент, что имеет постоянную зарплату, должен предпочесть аннуитетные виды платежей.
Если вы отдадите предпочтение дифференцированному графику, то обратите внимание на тот момент, что можно будет получить меньшую сумму (максимальную), чем при аннуитетном.
Нормативная база
Укажем, на какие законодательные акты стоит опираться, если принято решение оформить кредит:
- России и т. д.
Как рассчитать аннуитетный платеж по кредиту
Обычно финансовые учреждения предоставляют графики выплат по долгу для удобства заемщиков. Но любой человек может сам перепроверить расчеты банка.
Отметим, что сума платежа остается неизменной на протяжении всего периода кредитования. Сумма ежемесячного платежа должна включать размер долга и проценты по кредиту.
Общий показатель выплат получится выше, чем в случае с дифференцированными платежами.
Какая применяется формула
Аннуитет несложно рассчитать самостоятельно, если знать, какие применять формулы. Следует еще до того, как заключить соглашение, определить сумму, которую придется платить каждый месяц, сумму, что в итоге будет выплачена и размер переплаты.
Размер ежемесячного платежа рассчитывают, учитывая три показателя:
- размер ;
- период, на который выдается кредит;
- коэффициент аннуитета, который представлен величиной, что позволяет произвести расчеты платежей, учитывая ставку процентов.
Размер аннуитетного платежа определяется по такой формуле:
Чтобы определить ту часть платежа, что вносится каждый месяц, и должна идти в счет погашения основной задолженности по кредиту, стоит отнять от общей суммы кредита проценты, что начислены.
Для определения части средств, что пойдут на погашение задолженности, от месячной суммы платежа отнять проценты, что были начислены.
Пример расчета
Разберемся на примере, как совершаются аннуитетные платежи. Условия:
Сначала определяют сумму, что должна уплачиваться каждый месяц:
Получается 17156,14. В первом месяце начисляется сумма процентов 833,33 рубля. Это мы определили, произведя такой расчет:
Размер платежа по основной задолженности:
Во втором месяце основная сумма будет 83677,19 (100 тыс. – 16322,81). Сумма процентов – 697,31 (83677,19 * 0,1 / 12).
Произведем расчеты на третий месяц:
Величина процентов – 560,15 (67218,36 * 0,1/12). Такие расчеты проводят за каждый месяц. За последний месяц заемщик должен будет уплатить только 141,79 рублей процентов.
Так как такая схема ежемесячного расчета будет увеличивать размер процентов, что выплачиваются, то величину всех переплат можно определить.
Необходимо только умножить сумму ежемесячного платежа на количество платежей. Далее отнимают от полученного результата размер суммы кредита, что был взят.
В данном случае переплата составит 2936,84 (17156,14 * 6 платежей – 100 тыс.). Приведем еще один пример, представив график выплат.
Параметры:
Итоги расчета по указанным формулам будут такими:
Рассчитывать аннуитетные платежи вручную не очень удобно. Поэтому не некоторых сайтах предлагают упростить себе данный процесс и использовать специальную функцию табличного процессора.
Можно использовать программу Excel, в которой есть функция ПЛТ. Все, что от вас требуется – создайте чистый лист, введите в ячейке функцию ПЛТ, задав необходимые параметры.
Видео: аннуитетные платежи
Если использовать указанные выше параметры, то вид формула аннуитетного платежа excel ПЛТ будет таким – 10%/12, 6, -100000. Когда введете данные, в ячейке высветится показатель, который получится.
Существуют также кредитные калькуляторы. Их можно найти на различных интернет-ресурсах. Они представлены программой, которая способна не только рассчитать сумму ежемесячного платежа, но и может отражать график платежей в течение всего срока кредитования.
Когда происходит изменение суммы
Сумма платежа по кредиту при аннуитетной схеме постоянно одинакова. Изменить ее можно только в том случае, если об этом договорятся стороны соглашения, если часть или весь долг будет погашен досрочно.
Имеет ли смысл досрочное погашение ипотеки
Если вы желаете досрочно погасить кредит, банковская организация предложит вам один из таких способов:
Учтите, что есть банки, которые возьмут комиссию в том случае, если придется пересчитывать график аннуитетных платежей.
А некоторые будет плату даже за само досрочное погашение задолженности перед банковской организацией.
Чтобы была осуществлена процедура досрочного погашения задолженности, стоит:
Такие нюансы лучше уточнить еще на этапе подписания договора. Кто-то желает побыстрее погасить долг, а кто-то хочет направлять свои деньги с выплат по кредиту на иную цель.
Какой способ выбрать, зависит не только от заемщика, но и от финансовой организации, которая данные возможности предоставляет.
Если вы берете кредит, то обязуетесь погашать ссуженную сумму и проценты за пользование ею на протяжении определенного срока. Для того чтобы клиенту было ясно, как и в какие сроки следует вносить проплаты, составляют графики погашения.
Наиболее распространенный вариант - внесение аннуитетных платежей, то есть выплата кредита равными суммами.
Как рассчитать размер аннуитетного платежа?
Существует специальная формула, которая позволяет рассчитать сумму, которую ежемесячно следует вносить для погашения долга перед банком и процентов по нему.
А = К х S
В этой формуле:
A - размер платежа
K - коэффициент аннуитета
S - сумма полученного кредита
Есть один неизвестный элемент формулы - коэффициент аннуитета. Его необходимо рассчитать отдельно по соответствующей формуле.
Здесь i - это месячная ставка процентов за пользование кредитом, которая рассчитывается путем деления годовой ставки на 12 месяцев
n - количество месяцев, на протяжении которого кредит необходимо погасить.
Эта формула поможет вам самостоятельно рассчитать сумму, которую следует вносить каждый месяц в пользу банка.
Как рассчитать аннуитетные платежи в Excel
Чтобы не утруждать себя расчетами вручную, попробуйте сделать это при помощи таблицы Excel. Там есть специальная функция под названием ПЛТ. Для расчетов следует создать новую таблицу и ввести строку в любой ячейке. Если вам выдали кредит в сумме 30000 руб., под 18% годовых на 36 месяцев, необходимо ввести в ячейку вот такое выражение.
ПЛТ(18%/12; 36; -30000)
В скобках вы вводите данные в таком порядке: размер процентной ставки, количество месяцев внесения проплат, сумма, полученная в долг. Минус перед 30000 как раз и означает долговое обязательство, в принципе, ставить его необязательно, если только вы не используете форулу для более сложных вычислений и знак принципиально важен.
Можно внести запись и в таком виде:
ПЛТ(0,015; 36; -30000)
Получается 1084,57 рублей.
Если лень вбивать формулу - просто скачайте готовый файл с формулой аннуитета или же обратитесь к кредитному калькулятору .
Произведенные расчеты помогут вам удостовериться, что сотрудники банка верно исчислили суммы, на которую ежемесячно будет уменьшаться ваш бюджет.
Справка: аннуитетные и дифференцированные платежи
По аннуитетной схеме клиент ежемесячно вносит в счет погашения кредита и процентов по нему одинаковую сумму. Так происходит на протяжении всего срока действия договора с финансовым учреждением.
Есть еще способ погашения кредита посредством дифференцированных платежей. Выбирая такой вариант погашения ежемесячная сумма, вносимая в пользу банка, будет каждый месяц разной и будет постоянно уменьшаться, так как сокращается сумма процентов на остаток долга. Смотрите также статью о дифференцированном способе погашения.
Банкам выгоднее предлагать клиентам схему с аннуитетными платежами, так как в таком случае они больше зарабатывают за счет большей суммы процентов. И клиентам удобнее такая схема, так как каждый месяц нужно вносить одинаковую сумму. Это не требует излишних затрат времени на уточнение того, какую сумму нужно вносить.
Кредиты являются неотъемлемой частью жизни многих людей, которые дают возможность сразу получить нужную сумму денег, а после возвращать её небольшими платежами. При этом непременным условием является платность кредита. В процессе составления кредитного договора банк может предлагать клиентам разные схемы выплат, к которым относятся аннуитетные или дифференцированные платежи. Наиболее часто приходится иметь дело с первым вариантом, поэтому многих потенциальных заемщиков интересует вопрос о том, что такое аннуитетные платежи.
Аннуитетная схема погашения кредита предполагает, что ежемесячно человек, оформивший заем, выплачивает кредитному учреждению одну и ту же сумму, четко прописанную в договоре. На протяжении всего срока она остается неизменной (на нее никаким образом не влияют какие-либо факторы). Деньги обязаны уплачиваться каждый месяц до определенного числа. Однако следует учитывать, что с каждым месяцем меняется соотношение в сумме процентов и основного тела кредита. Первоначально осуществляется в большей мере возврат процентов, а потом только выплачивается основной долг.
Именно аннуитетный платеж считается наиболее популярным среди большого количества кредитных учреждений, поскольку такая система выгодна для них. Однако она выгодна и для самих заемщиков, поскольку на протяжении всего срока, когда погашаются кредиты, выплачивается ежемесячно невысокая и приемлемая сумма денег. Если же выбирается другая схема, при которой осуществляются дифференцированные платежи, то сразу после оформления займа приходится каждый месяц платить значительную сумму, уменьшающуюся к концу срока кредитования.
Преимущества применения схемы
Важно не только знать, что такое аннуитетные платежи, но и какими плюсами они обладают. К положительным сторонам их применения относятся:

К минусам использования данной схемы можно отнести существенную переплату за кредит, поскольку проценты на самом деле являются всегда очень высокими. Помимо этого, неравномерно гасятся проценты и сам долг, а это считается особенно важным для людей, которые стараются досрочно погашать заем. Как уже говорилось, заемщик сначала возвращает проценты и только после этого основное тело долга.
Правила расчета
Каждый человек, который желает взять кредит, должен заранее рассчитать взносы. Разумеется, исходя из этого, возникает вопрос относительно того, как распределить аннуитетные платежи. Для этого используется стандартная формула, она доступна для понимания каждому человеку. Выполнить расчет аннуитетного платежа можно самостоятельно еще до оформления самого займа. Это позволит предварительно понять, какая ежемесячная сумма обязательно будет выплачиваться банку и осознать, справится ли заемщик с такой кредитной нагрузкой.
Для расчета аннуитетного платежа необходимо наличие только трех показателей, к которым относится:

Формула расчета коэффициента производится следующим образом: К= i*(1+i)*n/((1+i)n-1), где:
- К - коэффициент аннуитета;
- I - ставка процента за конкретный период, причем чаще всего для этого берется один месяц;
- n - число периодов за срок, на который оформлен заем.
Нередко у заемщика отсутствует информация о том, какова ставка за месяц, поскольку банк предоставляет данные лишь о годовых ставках. Рассчитывается данный показатель по формуле: l=(1+r)1/12–1, где «r» является годовой ставкой процента, выраженной в сотых долях.
Как только получен коэффициент аннуитета, без проблем рассчитывается сумма ежемесячного платежа по кредиту. Для этого используется опять же таки несложная формула: P=K*S. В данном случае «P» – ежемесячный платеж, а именно этот показатель считается наиболее важным для каждого потенциального заемщика, чтобы он смог определить свою готовность и возможность справляться с кредитной нагрузкой, а «S»- сумма займа.
Кредитование с помощью использования аннуитетных платежей считается достаточно популярным, поэтому многих потенциальных заемщиков интересует вопрос о разных способах, которыми можно пользоваться для досрочного погашения займов. Именно за счет данного действия снижается срок кредита.
Обычно кредитные организации предлагают два способа, с помощью которых осуществляется досрочное погашение:
- сумма денег, вносимая досрочно, должна быть больше, чем размер ежемесячного взноса;
- долг гасится полностью до окончания срока действия договора.
Для осуществления досрочного погашения выполняются следующие действия:

Для любого банка оплаченный до установленного срока заем является невыгодным, поскольку организация теряет прибыль. Поэтому некоторые учреждения создают определенные препятствия для заемщиков, желающих осуществить досрочное погашение. Для этого может назначаться слишком высокая сумма, которую можно внести досрочно, а некоторые банки вовсе ставят запрет на частичное погашение, а допускается только полное закрытие займа. Ранее вообще назначались дополнительные комиссии при внесении средств. Стоит отметить, что в каждом банке данная процедура может обладать своими особенностями.
Таким образом, каждый человек, желающий оформить кредит, должен разобраться в основных понятиях и терминах. К ним относится информация о том, что могут означать аннуитетные платежи для банка и заемщика, как закрывать кредит, а также какими особенностями обладает досрочное погашение. Зная об этом, никаких проблем с выплатой займа не будет возникать.
Первое правило при оформлении кредита - нужно адекватно оценить собственную платежеспособность, чтобы платежи по нему со временем не стали обременительными для заемщика. Но на этом этапе иногда возникают сложности, поскольку не у всех есть экономическое образование, чтобы правильно произвести необходимые вычисления. Для облегчения задачи здесь собраны все возможные способы для расчета аннуитетных платежей по кредиту, которыми можно воспользоваться для планирования собственного бюджета.
Аннуитетный платеж - это…
Перед практической частью изучения вопроса следует ознакомиться с теорией. В экономической теории аннуитетный платеж - это один из способов ежемесячного платежа по кредиту, когда его сумма остается неизменной на протяжении всего срока кредитования.
Способы расчета ежемесячного аннуитетного платежа по кредиту
На самом деле, рассчитать точный размер платежа достаточно просто. Причем это можно сделать сразу несколькими способами. Используя хотя бы один из них, можно сориентироваться в предстоящих выплатах и оценить, насколько «подъемной» окажется банковская ссуда.
Способы расчета аннуитетного платежа:
- вручную при помощи формулы;
- с использованием программы Microsoft Excel;
- на сайте банка с помощью кредитного калькулятора.
Каждый из методов расчета при правильном применении даст точную цифру, равную предстоящему размеру платежа. Поэтому, если есть сомнения в правильности уже сделанных вычислений, можно произвести проверку, рассчитав аннуитетный платеж другим возможным способом.
Формула расчета
Расчет процентов по кредиту при аннуитетных платежах вне зависимости от выбранного способа вычислений производится с помощью специальной формулы. Кредитные калькуляторы, мобильные приложения и другое программное обеспечение делает правильные расчеты, отталкиваясь именно от нее.
Общий вид данной формулы выглядит следующим образом:
АП = О * пс / 1 - (1 + пс) -с,
АП - ежемесячный аннуитетный платеж;
О - сумма основного долга;
пс - ежемесячная процентная ставка банка;
с - количество месяцев в сроке кредитования.
Зная формулу, можно запросто произвести необходимые расчеты самостоятельно. Достаточно лишь подставить исходные данные предполагаемого кредита вместо букв, и произвести необходимые математические вычисления при помощи обычного калькулятора. Но чтобы расчет погашения кредита аннуитетными платежами стал наиболее понятным, рассмотрим его на примере.
Пример расчета
Предположим, что заемщик взял в банке ссуду на сумму 50 000 рублей сроком на 5 лет. По условиям кредитного договора годовая процентная ставка по кредиту равна 20 %.
Исходя из формулы, для вычислений необходимо знать ежемесячную процентную ставку. Банки редко указывают данную цифру в кредитном договоре, поэтому нужно найти ее самостоятельно. Для этого нужно воспользоваться формулой:
пс = П / 100 / 12,
П - годовая процентная ставка.
пс = 20 / 100 / 12 = 0,017.
Зная все исходные данные, можно приступать к нахождению аннуитетного платежа по кредиту. Оно выглядит следующим образом:
АП = 50 000 * 0,017 / 1 - (1 + 0,017) -60 = 1336,47 руб.
Расчет аннуитетных платежей по кредиту в Excel
Программа Excel - это не просто большая таблица. В ней можно произвести огромное количество вычислений, зная лишь, какие формулы нужно использовать. Для расчета аннуитетного платежа в Excel есть специальная функция - ПЛТ. Чтобы правильно ей воспользоваться, нужно действовать, придерживаясь следующих шагов:
- Заполнить исходные данные (сумма, проценты и срок кредита в ячейках В2, В3, В4 соответственно).
- Составить график погашения кредита по месяцам (А7 -А n).
- Сделать столбец «Платежи по кредиту» (В7 - В n).
- Напротив первого месяца в столбце «Платежи по кредиту» ввести формулу
ПЛТ ($В3/12;$В$4;$В$2) и нажать Enter.
Результат вычислений отобразиться в таблице красным цветом со знаком «-». Это нормально, ведь эти деньги заемщик будет отдавать банку, а не получать. аннуитетными платежами в Excel позволяет сделать вычисления и таким образом, чтобы значения были положительными. С ее помощью банковские сотрудники в считанные минуты могут сделать и распечатать график платежей кредитополучателям, экономя их время.
Чтобы заполнить все месяцы, нужно протянуть ячейку с формулой до конца графика погашения. Но поскольку аннуитетный платеж со временем не меняется, цифры в ячейках будут одинаковые.
Перепроверить полученные данные можно с помощью кредитного калькулятора аннуитетных платежей. Он есть на сайтах всех банков, которые выдают ссуды с таким способом погашения. Для использования кредитного калькулятора понадобятся те же исходные данные, что и для предыдущих способов расчета. Их нужно ввести в отведенные поля для заполнения. И затем программа самостоятельно сделает все расчеты в течение нескольких секунд, дав потенциальному заемщику возможность оценить полученную сумму и хорошенько подумать о предстоящем оформлении кредита.
Итак, друзья, вот мы и добрались до самого интересного – до формул и расчетов, связанных с аннуитетными платежами. Хотя врём, данная тема скучна и неинтересна. Кто не «дружит» с математикой может сейчас начать зевать, а на определённом этапе – впасть в ступор.
Тем не менее, команда портала сайт решила рискнуть и написать простыми словами о формулах и расчетах аннуитетных платежей. Что из этого получилось, вы узнаете, прочитав эту публикацию.
Формула расчета аннуитетных платежей
Вы точно уверены, что хотите увидеть формулу аннуитетного платежа? Хорошо, вот она:
P – ежемесячный платёж по аннуитетному кредиту (тот самый аннуитетный платёж, который не изменяется в течение всего периода погашения кредита);
S – сумма кредита;
i – ежемесячная процентная ставка (рассчитывается по следующей формуле: годовая процентная ставка/100/12);
n – срок, на который берётся кредит (указывается количество месяцев).
На первый взгляд данная формула может показаться страшной и непонятной. С другой стороны, а надо ли её понимать? Вам же требуется всего лишь рассчитать сумму аннуитетного платежа, верно? А что для этого надо? Правильно, надо просто подставить в формулу свои значения и произвести расчеты. Давайте сейчас этим и займёмся!
Расчёт аннуитетного платежа по кредиту
Допустим, вы решили взять в кредит 50 000 рублей на 12 месяцев под 22% годовых. Естественно, тип погашения будет аннуитетный. Вам надо рассчитать сумму ежемесячных взносов по кредиту.
Давайте для начала красиво оформим наши исходные данные (они нам понадобятся не только в этом, но и в дальнейших расчетах):
Сумма кредита: 50 000 руб.Годовая процентная ставка: 22% .
Срок кредитования: 12 месяцев .
Итак, прежде чем приступить к расчёту аннуитетного платежа, надо посчитать ежемесячную процентную ставку (в формуле она скрывается под символом i и рассчитывается так: годовая процентная ставка/100/12). В нашем случае получится следующее:
Теперь, когда мы нашли значение i , можно приступать к расчёту размера аннуитетного платежа по нашему кредиту:
Путём несложных математических вычислений выяснилось, что сумма ежемесячных отчислений по нашему кредиту будет равна 4680 рублей .
В принципе, на этом можно было бы закончить нашу статью, но вы же наверняка хотите знать больше. Правда? Вот скажите, вы хотите знать, какую долю в данных выплатах составляют проценты по кредиту, а какую – ? Да и вообще, сколько вы переплатите по кредиту? Если да, тогда мы продолжаем!
График погашения кредита аннуитетными платежами
Вначале мы продемонстрируем вам сам график аннуитетных платежей, проанализируем его вместе с вами, а уж затем детально расскажем о том, как и по каким формулам мы его рассчитали.
Вот так выглядит аннуитетный график погашения нашего кредита:

А это диаграмма (для наглядности):

И график, и диаграмма подтверждают написанное в публикации: . Если вы по каким-то причинам её не читали, то обязательно это сделайте – не пожалеете. А те, кто читал, могут убедиться, что в аннуитетном графике погашения кредита выплаты осуществляются равными суммами, на начальном этапе доля процентов по кредиту самая высокая, а ближе к окончанию срока она существенно снижается.
Обратите внимание на то, что тело кредита погашается с первого же месяца кредитования. Просто на некоторых сайтах можно прочитать что-то типа такого: «При аннуитетной схеме погашения займа, вначале выплачиваются проценты, а уже потом само тело кредита». Как видите, это утверждение не соответствует действительности. Правильнее будет сказать так:
Аннуитетные платежи содержат в себе на начальном этапе высокую долю процентов по кредиту.
Тело же кредита тоже погашается с первого месяца кредитования. Тем самым, уменьшается сумма долга и, соответственно, размер выплат процентов по кредиту.
Теперь давайте детальнее изучим наш график аннуитетных платежей. Как видите, ежемесячный платёж у нас составляет 4680 рублей . Именно эту сумму мы будем каждый месяц выплачивать банку на протяжении всего срока кредитования (в нашем случае – на протяжении 12 месяцев ). В результате, общая сумма выплат составит 56 157 рублей . В кредит же мы брали 50 000 рублей (в графике это четвёртая колонка, которая называется «Погашение тела кредита»). Получается, что переплата по данному займу составит 6157 рублей . Собственно, это и есть проценты по кредиту, которые указаны в третьей колонке нашего графика аннуитетных платежей. Получается, что (или ) у нас составит – 12,31% . Давайте «красиво» оформим данную информацию:
Ежемесячный аннуитетный платёж: 4680 руб.Тело кредита: 50 000 руб.
Общая сумма выплат: 56 157 руб.
Переплата (проценты) по кредиту: 6157 руб.
Эффективная процентная ставка: 12,31% .
Итак, мы с вами проанализировали график аннуитетных платежей. Осталось понять, как вычисляется процентная доля и доля тела кредита в ежемесячных выплатах. Вот почему в первый месяц проценты составляют именно 917 рублей , во второй – 848 рублей , в третий – 777 рублей и т.д.? Хотите узнать? Тогда читайте дальше!
Расчёт процентов по аннуитетным платежам

I n – сумма в аннуитетном платеже, которая идёт на погашение процентов по кредиту;
S n – сумма оставшейся задолженности по кредиту (остаток по кредиту);
i – уже знакомая вам ежемесячная процентная ставка (в нашем случае она равна – 0.018333 ).
Давайте для наглядности рассчитаем долю процентов в первом платеже по нашему кредиту:
Так как это первый платёж, то суммой оставшейся задолженности по кредиту является весь кредит – 50 000 руб. Умножив эту сумму на ежемесячную процентную ставку – 0.018333 , мы и получим 917 руб. – сумму, указанную в нашем графике.
При расчёте суммы процентов в следующем аннуитетном платеже, на месячную процентную ставку умножается долг, который сформировался на конец предыдущего месяца (в нашем случае это 46 237 руб. ). В результате получится 848 руб. – размер доли процентов во втором аннуитетном платеже. По такому же принципу рассчитываются проценты в остальных платежах. Далее давайте вычислим составляющую в аннуитетных платежах, которая пойдёт на погашение тела кредита.
Расчёт доли тела кредита в аннуитетных платежах
Зная долю процентов в аннуитетном платеже, можно легко посчитать долю тела кредита. Формула расчёта проста и понятна:

S – сумма в аннуитетном платеже, которая идёт на погашение тела кредита;
P – ежемесячный аннуитетный платёж;
I n – сумма в аннуитетном платеже, которая идёт на погашение процентов по кредиту.
Как видите, здесь нет ничего сложного. По сути, аннуитетный платёж содержит в себе две составляющие:
- 1. Долю процентов по кредиту.
- 2. Долю тела кредита.
Если нам известна величина самого аннуитетного платежа и размер процентной доли, то на погашение тела кредита в этом платеже пойдёт то, что останется после вычитания из него суммы процентов.
Расчёт доли тела кредита в нашем первом платеже выглядит так:
Надеемся, теперь всем понятно, откуда в графе «Погашение тела кредита» нашего графика аннуитетных платежей в выплатах за первый месяц взялась сумма 3763 руб. Да-да, это именно то, что осталось после того, как мы из суммы аннуитетного платежа (4680 руб. ) вычли сумму процентов по кредиту (917 руб. ). Аналогичным образом рассчитаны значения этой графы за последующие месяцы.
Итак, с телом кредита разобрались. Теперь осталось выяснить, как рассчитывается долг на конец месяца (в графике аннуитетных платежей это у нас последняя колонка).
Как рассчитать долг на конец месяца в графике аннуитетных платежей
Прежде всего, надо понимать, что именно является вашим долгом по кредиту, и какие выплаты способствуют его уменьшению. В нашем примере вы берёте в кредит 50 000 рублей – это и есть ваш долг. Переплаченные по кредиту проценты (6157 рублей ) вашим долгом не являются, это всего лишь вознаграждение банку за предоставленный кредит. Таким образом, можно сделать вывод:
Погашение процентов по кредиту никак не способствует уменьшению вашего долга перед банком.
В кризисные времена банки часто «идут навстречу» своим должникам. Они говорят как-то так: «Мы понимаем, у вас сейчас проблемы! Окей, наш банк готов пойти вам на уступки – можете нам просто погашать проценты, а само тело кредита погашать не надо. Все же люди братья и должны друг другу помогать! Бла-бла-бла…»
На первый взгляд такое предложение может показаться выгодным, а сам банк – «белым и пушистым лапулей». Ага, как бы ни так! Если взять в руки калькулятор и провести простые арифметические расчёты, то сразу становится ясно, что реальное предложение банка выглядит приблизительно так:
«Ребята, вы попали на деньги! Ничего не поделаешь, это жизнь! Предлагаем вам на время (а может и навсегда) стать нашим рабом – будете ежемесячно выплачивать проценты по кредиту, а сам долг погашать не надо (ну, чтобы сумма выплат по процентам не уменьшалась). Ничего личного – это просто бизнес, друзья!»
Теперь запомните главную мысль:
Именно погашение тела кредита вытаскивает вас из долговой ямы. Не процентов, а именно тела кредита.
Наверняка вы уже догадались, как рассчитывается долг на конец месяца в нашем графике платежей. В общем, формула выглядит так:

S n2 – долг на конец месяца по аннуитетному кредиту;
S n1 – сумма текущей задолженности по кредиту;
S – сумма в аннуитетном платеже, которая идёт на погашение тела кредита.
Обратите внимание! При расчёте долга на конец месяца, от общей суммы текущей задолженности отнимается только та часть платежа, которая идёт на погашение тела кредита (уплаченные проценты сюда не входят).
Давайте для наглядности посчитаем, каким будет долг на конец месяца по нашему кредиту после внесения первого платежа:
Итак, при первом платеже текущая задолженность по кредиту у нас равна всей сумме займа (50 000 руб. ). Чтобы посчитать долг на конец месяца, мы отнимаем от этой суммы не весь ежемесячный платёж (4680 руб. ), а только ту часть, которая ушла на погашение тела кредита (3763 руб. ). В результате наш долг на конец месяца составит 46 237 руб. , именно на эту сумму будут начисляться проценты в следующем месяце. Естественно, они будут меньше, так как сумма долга уменьшилась. Теперь вы понимаете, почему важно погашать именно тело кредита?
Формула аннуитетного платежа, расчет платежа
Когда вы берёте в банке кредит, вы обязуетесь в течение определённого срока выплачивать сумму взятого кредита и процентов по нему. Существует несколько способов погашения кредита, распространённый способ — это аннуитетные платежи. В этой статье мы рассмотрим, что такое аннуитетные платежи, узнаем формулу аннуитетного платежа и проведём расчёт.
Аннуитетный и дифференцированный платёж
Аннуитет — это одинаковый по сумме ежемесячный платёж. То есть при аннуитетном платеже вы каждый месяц платите одинаковую сумму (кредит + проценты по нему) независимо от оставшейся суммы задолженности.
Другой способ погашения кредита — это дифференцированный платёж, то есть выплата процентов на оставшуюся задолженность. При дифференцированных платежах ваша сумма ежемесячных выплат будет уменьшаться к концу срока кредита, поскольку вы будете выплачивать проценты за кредит на оставшуюся сумму задолженности. Например, погасив 80% кредита, вы будете платить проценты за оставшуюся сумму (20%).
Для самих банков выгоднее применять аннуитетные платежи, поскольку в этом случае они получают больше прибыли по процентам. Заемщикам же аннуитетные платежи выгоднее в том плане, что удобнее каждый месяц платить одну и ту же сумму, чем каждый раз разную и уточнять, сколько же ему надо внести в следующий месяц.
Формула аннуитетного платежа
В соответствии с формулой аннуитетного платежа размер периодических (ежемесячных) выплат будет составлять:
A = K · S
где А — ежемесячный аннуитетный платёж,
К — коэффициент аннуитета,
S — сумма кредита.
Коэффициент аннуитета рассчитывается по следующей формуле:
где i — месячная процентная ставка по кредиту (= годовая ставка / 12),
n — количество периодов, в течение которых выплачивается кредит.
Поскольку периодичность платежей по кредиту — ежемесячно, то ставка по кредиту (i) берётся месячная. Если процентная ставка 12% годовых, то месячная ставка:
i = 12% / 12 мес = 1%.
С помощью приведённой выше формулы аннуитетного платежа вы можете узнать ежемесячную сумму, которую нужно платить, чтобы погасить кредит.
Расчет аннуитетного платежа
Приведём пример расчета аннуитетного платежа.
Допустим, вы взяли в банке кредит на сумму 30 000 рублей под 18% годовых сроком на 3 года.
Исходные данные:
S = 30 000 рублей
i = 1,5% (18% / 12 мес) = 0,015
n = 36 (3 года х 12 мес)
Подставляем эти значения в формулу и определяем коэффициент аннуитета:
К = | 0,015*(1+0,015)36 | = 0,03615 |
(1+0,015)36 — 1 |
Размер ежемесячных выплат:
A = K*S = 0,03615 * 30000 = 1084,57 рублей.
Расчет аннуитетного платежа в Microsoft Excel
Если у вас возникают проблемы с ручным расчётом аннуитетных платежей — можно вычислить в Excel. В Экселе есть специальная функция ПЛТ. Просто создаёте новую таблицу и в любой ячейке вводите строку.
Подставим те же исходные данные, что и в примере, рассмотренном выше. В результате в Экселе нужно ввести следующее выражение:
В скобках формулы указывается по порядку: процентная ставка, количество месяцев, сумма кредита. Можно также записать так:
18% годовых / 12 месяцев / 100 = 0,015
В любом случае у нас сумма ежемесячных платежей получится 1084,57 рублей.
Расчет аннуитетного платежа в excel
.