Формула сложных процентов в excel
Расчёт сложных процентов в Excel
Смотрите также получить прибыль, величина характеризующий числовое значенияСумма накопленных средств за производится с использованиемI18 на ее основании
- превышает ставку по ставки по кредитам,, Эффективная ставка по функцию ЧИСТВНДОХ(). Для используется для сравнения. Если задана эффективная
ставка действует один EXCEL. Постоянная ставка.
- Предположим, вы положили $10000Что такое сложный процент которой зависит от числа периодов за каждый период рассчитывается сложных процентов (эффективнаябудет рассчитана Эффективная принимать решение. Необходимо
увидим, что для кредиту для нашего
- этого нужно составить различные кредитных предложений годовая процентная ставка, MS EXCEL. период (в нашем Здесь рассмотрим ситуации,
в банк. Сколько и какая в
- следующих факторов: сумма год, на протяжении как как сумма ставка). По условиям ставка совпадающая, естественно, определиться какой график
всех платежей по случая может быть
- превышает ставку по ставки по кредитам,, Эффективная ставка по функцию ЧИСТВНДОХ(). Для используется для сравнения. Если задана эффективная
банков. то величина соответствующейВ MS EXCEL есть примере - 1 когда процентная ставка ваши инвестиции будут Excel есть формула средств, которая предоставляется которых начисляются сложные средств на счету
- договора вкладчик сможет с результатом формулы погашения больше Вам значительное количество дополнительных кредитам рассчитывается их вычислена по формуле кредиту и включитьЭффективная процентная ставка
функция ЭФФЕКТ(номинальная_ставка, кол_пер), год), т.е. размерность
- изменяется в течение стоить после 10 для его расчёта? в долг; длительность проценты. за прошедший период снять только полученные ЧИСТВНДОХ().
платежей: убрав файле приведенная стоимость к
=ЧИСТВНДОХ(G22:G34;B22:B34). Получим 72,24%. в него все
по кредиту отражает
процентной ставки рассчитывается
которая возвращает эффективную
office-guru.ru
Сложные проценты в MS EXCEL. Переменная ставка
массива определяет количество срока действия договора. лет по годовой Этот пример дает периода кредитования (использованияПримечания 1: и процентов, начисленных проценты. Определить сумму
Функция ЭФФЕКТ в ExcelПри увеличении срока кредита расчета все дополнительные моменту выдачи кредита.Значения Эффективных ставок дополнительные платежи. реальную стоимость кредита по формуле (фактическую) периодов начисления процентовРешим задачу ставке 5% с ответы на эти предоставленных средств); начисляемыеАргумент кол_пер может принимать
за текущий период. к получению, если предназначена для расчета разница между Эффективными платежи получим эффективную И, если мы используются при сравненииПример с точки зренияили с помощью функции
годовую (в нашем примере. Договором на открытие начислением процентов каждый вопросы. проценты за использование. дробные числа, значения В итоге первый размер депозита – фактической годовой процентной ставками практически не ставку 16,04% вместо хотим взять в нескольких кредитов: чья
. Рассчитаем Эффективную ставку заёмщика, то есть НОМИНАЛ(эффективная_ставка, кол_периодов). См.процентную ставку, если
– 3 периода).
вклада предусмотрено, что месяц?
Предположим, вы положили вПроценты могут начисляться различными
которых будут усечены банк начислит 60000
1 млн. рублей,
ставки (иное название изменяется (см. файл 72,24%!). 2-х банках одну
ставка меньше, тот по кредиту со учитывает все дополнительные файл примера. заданы номинальная годоваяЕсли период капитализации =1
вклад открывается на=B2*(1+B3/B4)^(B4*B5) банк $100. Сколько способами: базовая сумма
до целого числа рублей процентов, и капитализация – ежемесячная.
– эффективная ставка), примера Лист СравнениеПримечание и туже сумму, кредит и более следующими условиями: выплаты, непосредственно связанныеЕсли договор вклада длится, процентная ставка и месяцу, то формула 3 года. ВОтвет: ваши инвестиции будут остается неизменной (простые (в отличие от
вкладчик сможет забратьИсходные данные: на основе известных схем погашения (5лет)).. то стоит выбрать
выгоден заемщику.Сумма кредита - с кредитом (помимо скажем, 3 года,количество периодов в году наращения для сложных
первый год ставка$16470. стоить через год проценты) и база операции округления, при 310000 рублей.Формула для расчета: данных, таких какПримечаниеФункция ЧИСТВНДОХ() похожа тот банк, вНо, что за 250 тыс. руб.,
excel2.ru
Расчет Эффективной ставки в MS EXCEL
платежей по самому с ежемесячным начислением, в которые начисляются процентов будет выглядеть
составляет 10%, вПредположим, вы положили в при годовой процентной
изменяется при наступлении усечении отбрасывается дробнаяТаблица начисления процентов по=ЭФФЕКТ(B3;B2)*B4 номинальная годовая ставка,. на ВСД() (используется котором получается наименьшая смысл имеет 72,24%? срок - 1 кредиту). Такими дополнительными по сложным процентам сложные проценты. Под так: S = последующие – увеличивается банк $10000. Сколько ставке 8%?
Эффективная (фактическая) годовая процентная ставка
каждого последующего периода часть). условиям второго банка:Описание аргументов: число периодов начисленияЭффективная годовая ставка, для расчета ставки приведенная стоимость всех Может быть это год, дата договора выплатами являются банковские по ставке i, номинальной ставкой здесь 20000*((1+10%/12)^12 )*((1+12%/12)^12)*((1+14%/12)^12) на 2%. Период ваши инвестиции будут
=A1*1,08 выплат (сложные). ПриКаждый из двух аргументовВ данном случае процентыB2 – число периодов сложных процентов, и рассчитанная с помощью внутренней доходности, IRR), наших платежей в соответствующая ставка по (выдачи кредита) – комиссии — комиссии то Эффективная ставка понимается, годовая ставка,
Если ставки введены капитализации процентов – стоить после 15Ответ:
использовании сложных процентов функции ЭФФЕКТ должен не являются фиксированной капитализации; возвращает соответствующее числовое
функции ЭФФЕКТ(), дает в которой используется погашение кредита. Почему
простым процентам? Рассчитаем 17.04.2004, годовая ставка за открытие и по вкладу вычисляется которая прописывается, например, в диапазон год. Сумма вклада лет по годовой$108. сумма задолженности (прибыли)
быть представлен числовым
величиной и зависятB3 – номинальная ставка; значение. значение 16,075%. При аналогичное дисконтирование регулярных же тогда не ее как мы
– 15%, число ведение счёта, за по формуле:
Эффективная ставка по вкладу
в договоре наC31:C66 20т.р. Определить сумму ставке 4% сВ следующем году на увеличивается быстрее при (или процентным для от итоговой суммы
B4 – сумма вклада.
Пример 1. Предприниматель получил ее расчете не
платежей, но на сравнивают более понятные делали в предыдущих платежей в году
приём в кассуiэфф =((1+i/12)^(12*3)-1)*(1/3) открытие вклада., то формулу можно вклада в конце
начислением процентов каждый этот процент ($8) одинаковых сумме и аргумента номинальная_ставка) значением накоплений за предыдущийРезультат расчетов: ссуду в банковской используются размеры фактических
основе номера периода приведенные стоимости, а разделах: по аннуитетной схеме наличных денег иили через функциюПредположим, что сложные
Эффективная процентная ставка по потребительским кредитам
записать так =БЗРАСПИС(20000; срока (наращенную сумму). квартал? тоже будут начисляться периоде кредитования, в либо текстовой строкой, период (поэтому ссылкаДля сравнения, доход от организации на 1 платежей, а лишь выплаты, а не используют Эффективную ставку?Мы переплатили 80,77т.р. – 12 (ежемесячно). т.п., а также
ЭФФЕКТ(): iэфф= ЭФФЕКТ(i*3;3*12)/3 проценты начисляются m C31:C66)Решение=B2*(1+B3/B4)^(B4*B5) проценты (сложный процент). сравнении с применением которая может быть на ячейку L2 вклада при использовании год с эффективной номинальная ставка и от количества дней. А для того, (в виде процентов Дополнительные расходы – страховые выплаты.Для вывода формулы
раз в год.Размер массива со. В случае переменнойОтвет: Сколько ваши инвестиции простых процентов (особенно, преобразована в число. – абсолютная): простых процентов составил процентной ставкой 23,5%. количество периодов капитализации.Представим себе ситуацию, когда
чтобы сравнивать разные и дополнительных платежей) 1,9% от суммыПо закону банк справедливы те же Эффективная годовая процентная ставками должен соответствовать ставки, формула наращения$18167. будут стоить через если периодов начисления При вводе не=L3*$E$3/$E$4 бы 1000000*0,16=160000 рублей, Определить значение номинальной Если грубо, то в 2-х разных суммы кредита: Эффективная взяв кредит в кредита ежемесячно, разовая обязан прописывать в
рассуждения, что и ставка дает возможность общему количеству периодов для сложных процентов:Урок подготовлен для Вас два года при процентов (капитализации) достаточно преобразуемых к числовым
При расчете суммы за поэтому для вкладчика ставки, если по получается, что в
банках нам предлагают ставка поможет, если размере 250т.р. Если комиссия – 3000р. договоре эффективную ставку для годовой ставки: увидеть, какая годовая капитализации (12*3=36), аS = Р*(1+i)^n командой сайта office-guru.ru годовой ставке 8%? много. значениям текстовых строк каждый период к выгодно использовать предложенный условию договора выплаты
нашем частном случае взять в кредит в одном банке рассчитать ставку по при открытии банковского
по кредиту. НоS = Р*(1+i/m)^(3*m) ставка простых процентов ставки должны быть
где S -Источник: http://www.excel-easy.com/examples/compound-interest.html=A2*1,08Для получения результата в и имен, а текущему значению необходимо
вариант со сложными по кредиту необходимо (без дополнительных платежей) одинаковую сумму на дают 250т.р. на методу простых процентов, счета. дело в том,
– для сложных позволит достичь такого указаны за период, наращенная сумма,Перевел: Антон АндроновОтвет: формате процентов необходимо также данных логического прибавить проценты за процентами. проводить ежемесячно. отличие эффективной ставки
одинаковых условиях, но одних условиях, а то она составитСначала составим График платежей что заемщик сразу процентов, где Р
же финансового результата, т.е. 10%/12, 12%/12i - годоваяАвтор: Антон Андронов$116,64. установить соответствующий формат типа функция ЭФФЕКТ предыдущий период.
Пример 3. Два банкаИсходная таблица данных: по кредиту от выплата кредита в в другом 300т.р. 80,77/250*100%=32,3% (срок кредита по кредиту с не видит кредитного – начальная сумма что и m-разовое и 14%/12 (для ставка сложных процентов,Рассмотрим Сложный процент (CompoundСколько будут стоить ваши данных в ячейке, будет возвращать кодДля быстрого расчета итоговой предлагают сделать депозитный
Связь между значениями эффективной номинальной (15%) в одном будет осуществляться на других. =1 год). Это учетом дополнительных расходов договора и поэтому вклада. наращение в год первого года каждаяn - срок Interest) – начисление инвестиции после 5 в которой будет ошибки #ЗНАЧ!. суммы используем формулы: вклад на одинаковую и номинальной ставок основном обусловлено наличием дифференцированными платежами, аИтак, у нас значительно больше 15% (см. файл примера делает свой выбор,S = 3*Р*(1+iэфф) по ставке i/m, из 12 ставок ссуды процентов как на лет? Просто протяните введена функция ЭФФЕКТ.Аргумент номинальная_ставка принимает значенияПервый банк: сумму (250000 рублей) описывается следующей формулой: периодов капитализации (самой в другом по получилось, что сумма (ставка по кредиту), Лист Кредит). ориентируясь лишь на – для простых где i – =10%/12, для 2-годолжна быть изменена. основную сумму долга, формулу до ячейкиDimas2221
из диапазона положительныхВторой банк: на 1 год=(СТЕПЕНЬ(B3+1;1/B2)-1)*B2 сутью сложных процентов). аннуитетной схеме (равновеликими всех наших платежей и гораздо меньшеЗатем сформируем Итоговый номинальную ставку, указанную процентов (ежегодной капитализации номинальная ставка. =12%/12, для 3-гоДля 3-х периодов так и наA6: Товарищи, помогите, пожалуйста! чисел, а кол_перРезультаты расчетов: при следующих условиях:Полученный результат:Примечание платежами). Для простоты в погашение основной 72,24%. Значит, это денежный поток заемщика в рекламе банка. не происходит, процентыПри сроке контракта =14%/12). капитализации она примет начисленные ранее проценты,. Как в excel – из диапазонаНесмотря на то, что
Номинальная ставка – 24%,Проверим полученный результат, проведя. Сравнение графиков погашения предположим, что дополнительные суммы кредита дисконтированных не тот подход, (суммарные платежи наДля создания расчетного начисляются раз в 1 год поРассчитаем в MS EXCEL вид: S =
Использование эффективной ставки для сравнения кредитных договоров с разными схемами погашения
в случае переменнойОтвет: оформить финансовую формулу, от 1 до второй банк предлагает простые проценты, 12 пересчет эффективной ставки дифференцированными платежами и платежи не взимаются. по ставке 72,24% чтобы разобраться в определенные даты). файла в MS год (всего 3 формуле наращенной суммы эффективную годовую процентную Р*(1+i1) *(1+i2) *(1+i3) ставки.$146,93.
которая позволит начислять +∞. Если данные расчет с использованием периодов капитализации. с помощью функции: по аннуитетной схеме Зависит ли значение равна размеру кредита сути эффективной ставкеЭффективную ставку по кредиту
EXCEL воспользуемся Указаниями раза) всегда на имеем: ставку и эффективнуюВ нашем случае периодПри начислении по методуМы всего лишь умножили сложные проценты и условия не выполняются, сложных процентов, предложениеНоминальная ставка 22%, сложные
Описание аргументов: приведено в этой эффективной ставки от (это из определения по кредиту. iэфф определим используя
Центробанка РФ от первоначальную сумму вклада).S = Р*(1+i/m)^m ставку по кредиту. капитализации =1 году, сложных процентов, проценты 100 на 1,08 после каждого периода например, функции =ЭФФЕКТ(0;12) первого банка оказалось проценты, начисляемые поB4 – полученное выше статье. графика погашения? Сразу эффективной ставки). ЕслиТеперь вспомним принцип функцию ЧИСТВНДОХ (значения, 13 мая 2008Если срок вклада – для сложныхЭффективная ставка возникает, когда
поэтому итоговая формула в конце каждого пять раз. Стало вносить/выводить средства? Спасибо! или =ЭФФЕКТ(12%;0) вернут выгоднее. Если бы
итогам каждого периода, числовое значение номинальнойПримечание. даем ответ: зависит, в другом банке временной стоимости денег: даты, [предп]). В года № 2008-У =1 году, то процентов, где Р имеют место Сложные будет выглядеть так: периода начисления не быть, мы можемDimas2221 код ошибки #ЧИСЛО!.
число периодов капитализации 4 периода капитализации. ставки;Эффективную ставку по но незначительно. для соблюдения этого всем понятно, что
excel2.ru
Функция ЭФФЕКТ для расчета годовой процентной ставки в Excel
основе этой функции «О порядке расчета Эффективная ставка по – начальная сумма проценты. S = 20000*(1+10%) выплачиваются, а присоединяются вычислить стоимость инвестиций:Функция ЭФФЕКТ использует для совпадало (12), воОпределить выгодный вариант, отобразить
Примеры использования функции ЭФФЕКТ в Excel
B2 – число периодов кредиту можно рассчитатьВ файле примера на равенства потребуется дисконтировать 100т.р. сегодня – лежит формула: и доведения до вкладу = Эффективной вклада.Понятие эффективная ставка
*(1+12%) *(1+14%)=28 089,6р.

к основной сумме через 5 лет:Dimas2221
расчетов формулу, которая
втором банке вкладчик

схему выплат. погашения. и без функции

листе Сравнение схем
- суммы платежей идущих это значительно больше,Где, Pi = сумма
- заемщика — физического (фактической) годовой процентной
S = Р*(1+iэфф)

встречается в несколькихТот же результат можно и полученная величина=A1*1,08*1,08*1,08*1,08*1,08, почитайте в Справке может быть записана получил бы 310899,1
Исходные данные:Формула расчета процентов по вкладу в Excel
Результат: ЧИСТВНДОХ() - с погашения (1год) приведен на обслуживание долга чем 100т.р. через i-й выплаты заемщиком; лица полной стоимости ставке (См. файл – для простых определениях. Например, есть получить с помощью становится исходной дляЭто то же самое, про БС() или в Excel в
рублей, то есть

В первом случае таблица
Полученное значение 0,235 соответствует
помощью Подбора параметра.
- расчет для 2-х по б
- год при 15%
- di = дата
кредита» (приведена Формула

примера). процентов Эффективная (фактическая) функции БЗРАСПИС() (английский начисления процентов в что и: БЗРАСПИС() виде: =СТЕПЕНЬ(1+(A1/A2);A2)-1, где:
Как посчитать проценты на депозит в Excel для выбора вклада
больше денег, несмотря выплат выглядит так: 23,5% (значению эффективной Для этого в различных графиков погашенияо
- инфляции (или, наоборот i-й выплаты; d1 и порядок расчета
- Эффективная ставка по вкладуТак как финансовый результатгодовая вариант FVSCHEDULE(principal, schedule))
следующем периоде. Присоединение=A1*1,08^5
Dimas2221

A1 – номинальная годовая на более низкую

Проценты – постоянная величина, ставки по условию).
файле примера на
(сумма кредита 250льшей ставке, то условия - значительно меньше,
- = дата 1-й эффективной процентной ставки),
- и Эффективная годовая
- S должен быть,процентная ставка, есть
S =БЗРАСПИС(20000;{0,1;0,12;0,14}) – начисленных процентов кПримечание:: К сожалению, фнкции ставка; номинальную процентную ставку. рассчитываемая по формуле: Расчет номинальной ставки Листе Кредит создан т.р., срок =1 кредитного договора в если имеется альтернатива
выплаты (начальная дата, а также разъяснительным

ставка используются чаще по определению, одинаков Эффективная ставка использован массив констант сумме, которая служила Специальной функции для вычисления БС и БЗРАСПИСA2 – число периодов,
Функция имеет следующий синтаксис:
=$B$2*$B$3/$B$4 также можно производить столбец I (Дисконтированный год, выплаты производятся нем менее выгодны
положить эту сумму на которую дисконтируются
- письмом ЦБ РФ
- всего для сравнения
для обоих случаев,

по вкладу (0,1=10% и т.д.). базой для их сложных процентов в не подойдут( Подскажите в которые происходит=ЭФФЕКТ(номинальная_ставка;кол_пер)Описание аргументов (для создания с помощью функции денежный поток (для ежемесячно, ставка = (суммы кредитов могут в банк под все суммы).
Особенности использования функции ЭФФЕКТ в Excel
№ 175-Т от
доходности вкладов в
приравниваем оба уравнения
- (с учетом капитализации),Если ставки введены определения, называют капитализацией Excel не существует. еще варианты?
- начисление сложных процентов.Описание аргументов: абсолютной ссылки используйте НОМИНАЛ. Подбора параметра)). В 15%).
быть разными). Поэтому,
- 15%). Для сравненияУчитывая, что значения итогового 26 декабря 2006 различных банках. Несколько и после преобразования есть Эффективная процентная в диапазон процентов.
- Тем не менее,Чем не подходят?ПрошуПримечания 2:номинальная_ставка – обязательный аргумент, клавишу F4): окне инструмента ПодборВ случае дифференцированных платежей получается, что важнее сумм, относящихся к денежного потока находятся года, где можно иной смысл закладывается получим формулу, приведенную ставкаC14:C16
- Расчет начисления сложных можно легко создать прощения, все подошло.Для понимания термина «сложные характеризующий числовое (десятичная$B$2 – начальная суммаПример 2. Вкладчику предложили параметра введите значения Эффективная ставка по не само значение
- разным временным периодам в диапазоне найти примеры расчета при расчете Эффективной в справке MS
- по потребительским кредитам, то формулу можно
- процентов в случае калькулятор для сложных Просто неверно применял
проценты» рассмотрим пример.
- дробь) или процентное вклада; сделать депозит в указанные на рисунке кредиту = 16,243%, Эффективной ставки, а используют дисконтирование, т.е.G22:G34 эффективной ставки (см. ставки по кредитам, EXCEL для функции. Разберемся, что эти переписать без массива
- постоянной ставки рассмотрено процентов, чтобы сравнивать процент (писал в Владелец капитала предоставляет значение номинальной годовой$B$3 – годовая ставка; банк под 16% ниже. а в случае результат сравнения 2-х приведение их к, а даты выплат здесь ). прежде всего по ЭФФЕКТ() ставки из себя констант =БЗРАСПИС(20000;C14:C16) (см.
- в статье Сложные разные ставки и виде коэффициента), Спасибо денежные средства в ставки;$B$4 – число периодов
exceltable.com
Формула вычисления: сложные проценты с ежемесячным (ежегодным, ежедневным) внесением платежа
годовых (номинальная ставка),После нажатия кнопки ОК, аннуитета – 16,238%. ставок (конечно, если одному моменту времени. вЭффективную ставку по потребительским. Эффективная процентная
iэфф =((1+i/m)^m)-1 представляют и как файл примера). Каждая проценты в MS разную длительность. большое за совет!
долг и планируеткол_пер – обязательный аргумент, капитализации вклада. при этом расчете в ячейке
Разница незначительная, чтобы эффективная ставка значительно Вспомнив формулу ЭффективнойB22:B34 кредиту рассчитаем используя ставка по кредитамCyberForum.ru
Примечание
Банки процент за кредит сложный процент. Сложные проценты в MS EXCEL. Постоянная ставка
Имеющие сбережения заинтересованы в их сохранности и получении дополнительного дохода. Поэтому, выбрав надежный банк, вкладчики изучают условия и подсчитывают возможную прибыль. В большинстве случаев на вклады банки предлагают начисление сложных процентов.
Что это такое, чем выгодна такая схема, и какова формула сложных процентов по вкладам? Об этом расскажем ниже.
Что такое сложный процент?
Этим термином называют эффект, при котором к основной сумме вклада прибавляются проценты прибыли. Например, на вклад в сумме 100 000 рублей банк ежемесячно начисляет проценты.
Допустим, что процентная ставка составляет 10% годовых, и за первый месяц начислено 833 рубля. В следующем месяце на вкладе образуется сумма в размере 10 833 рубля, и на нее банк будет начислять проценты.
Таким образом, за второй месяц вкладчик получит доход уже 840 рублей, и так далее. Поэтому, размещая в банке депозит с капитализацией, можно получить больше прибыли, чем по вкладу с возможным снятием процентов.
Несколько статей по теме:
Приведем простой пример расчета сложных процентов для вклада сроком на три месяца.
Предположим, что на счет была внесена сумма 100 000 рублей под 12% годовых. Если забыть о сложном проценте, то предполагаемая прибыль определяется в 2958 рублей.
Но мы помним о капитализации и проводим расчеты, учитывая ежемесячное начисление процентов. Для наглядности представим расчет в таблице:
Месяцы | Сумма | Тариф | Дни | Проценты | Сумма с процентами |
январь | 100 000 | 12 | 31 | 1019 | 101 019 |
февраль | 101 019 | 12 | 28 | 930 | 101 949 |
март | 101 949 | 12 | 31 | 1039 | 102 988 |
Таким образом, вкладчик получит 2988 рублей. Это на 40 рублей больше, чем по схеме простого процента.
Тем, кто знаком с таблицами excel не составит труда сделать подобные расчеты для своих банковских вкладов.
Можно воспользоваться и математической формулой расчета:
S – общая сумма вклада с процентами (то, что получит вкладчик по окончании срока договора);
- Р – базовая сумма, первоначальный размер депозита;
- n –количество периодов начисления процентов (месяцев, лет, кварталов, дней);
- I – годовая процентная ставка.
Например, заключая договор с банком на 12 месяцев под ставку 12% годовых, владелец вклада с капитализацией получит:
S = 100 000 * (1+12/100/12)12 = 112829 руб.
Самые выгодные условия по вкладу
Из предыдущего раздела понятно, что схема с применением сложного процента дает больше прибыли, чем простые варианты. Но вкладчикам стоит знать о том, как банки могут манипулировать цифрами.
Самая распространенная уловка – предложение открыть вклад с начислением дохода в конце срока и увеличением ставки при пролонгации. На первый взгляд, подвоха нет: банк начислит положенный доход, увеличит тариф на следующий сезон.
Но на цифрах это выглядит менее привлекательно: расчеты производятся по формуле простого процента. На депозит в размере 100 000 рублей по ставке 12% годовых банк начислит доход 12 000 рублей. Условия договора могут содержать и «подводные камни».
Например, при продлении вклада еще на год, тариф составит 12,5%. А при расторжении договора банк оставляет за собой право начислить доход по ставке 10% годовых.
Еще один распространенный в банках вариант «экономии»– по вкладу с капитализацией начислять доход ежеквартально. Заключая подобный договор, вкладчик может не понимать, в чем его потери. А расчет банка прост: проценты по депозиту начисляются в конце каждого квартала. Соответственно, и капитализация происходит четыре раза в год, а не двенадцать, как при ежемесячном начислении.
Вот пример такого подхода:
Таблица 1. Ежемесячное начисление
Месяцы | Сумма | Тариф | Дни | Проценты | Сумма с процентами |
январь | 100 000 | 12 | 31 | 1019 | 101 019 |
февраль | 101 019 | 12 | 28 | 930 | 101 949 |
март | 101 949 | 12 | 31 | 1039 | 102 988 |
апрель | 102 988 | 12 | 30 | 1016 | 104 004 |
май | 104 004 | 12 | 31 | 1060 | 105 064 |
июнь | 105 064 | 12 | 30 | 1036 | 106 100 |
июль | 106 100 | 12 | 31 | 1081 | 107 182 |
август | 107 182 | 12 | 31 | 1092 | 108 274 |
сентябрь | 108 274 | 12 | 30 | 1068 | 109 342 |
октябрь | 109 342 | 12 | 31 | 1114 | 110 456 |
ноябрь | 110 456 | 12 | 30 | 1089 | 111 546 |
декабрь | 111 546 | 12 | 31 | 1137 | 112 682 |
Таблица 2. Ежеквартальное начисление
Периоды | Сумма | Тариф | Дни | Проценты | Сумма с процентами |
1 | 100 000 | 12 | 90 | 2959 | 102 959 |
2 | 102 959 | 12 | 91 | 3080 | 106 039 |
3 | 106 039 | 12 | 92 | 3207 | 109 247 |
4 | 109 247 | 12 | 92 | 3304 | 112 551 |
Как видно, разница составляет 132 рубля в пользу банка.
Вкладчикам, которые хотят открыть короткий депозит, например, на несколько дней новогодних каникул, нужно знать о том, что день выдачи средств не считается в общем сроке их использования.
Простыми словами: открывая депозит 30 декабря и забирая деньги 12 января, клиент получит доход за 13 дней, а не за 14: банк не начислит проценты за 12 января.
Как правило, самые выгодные для клиента варианты – это депозиты с капитализацией, ежемесячным начислением и с пополнением. Но банки ставят по таким вкладам не самые высокие тарифы, манипулируя цифрами и ориентируя вкладчиков на длительное размещение средств.
Могут быть и другие нюансы, о которых стоит знать заранее. Поэтому, выбирая банк, нужно ориентироваться не только на величину процентов по вкладам, но и на способ начисления, условия выплаты и дополнительные возможности для вкладчика.
Рано или поздно большинство людей обращаются в банк с желанием взять кредит. Их мотивы вполне понятны – намного проще взять деньги в банке под проценты, чем просить в долг необходимую сумму у знакомых и друзей.
В человеческой жизни порой случаются такие моменты, к которым невозможно подготовится заранее, когда отложенных денег просто банально не хватает. После прочтения страшных историй в прессе, когда банк за просрочки и долги по кредитам отнимает у людей жилье или транспорт, практически каждый человек, решивший взять средства в кредит, старается очень основательно подготовиться к походу в банк. Можно попробовать самому рассчитать проценты по выбранному кредиту, а также определить размер переплаты по нему.
Почти все банки, на сегодняшний день, выдают кредиты, по условиям которых регулярные ежемесячные платежи не меняются. Такие платежи называются аннуитетными. Любой кредитный платеж, как правило, состоит из суммы оплаты основного долга и процентов, начисленных на нее . В некоторых случаях сюда входит еще и дополнительная ежемесячная комиссия банка. В сумме первых выплат размер процентов выше, а в течении срока оплаты кредита он постепенно уменьшается. Соответственно, размер выплат основного долга увеличивается.
Как правило, все кредитные договора составляются с учетом простых или сложных процентов. Под понятием простых процентов по кредиту имеется в виду, они будут определяться на основе первоначальной суммы займа, вне зависимости от длительности кредитного договора и количества платежей.
Сложные проценты по кредиту , это способ расчета процентов, при использовании которого они начисляются на первоначальную сумму долга по кредиту, а также на прирост долга по кредиту, который начислен уже после первого начисления процентов. То есть, основа для начисления таких процентов будет постепенно увеличиваться, в зависимости от каждого периода начисления. Если говорить более простым языком, то расчет сложных процентов по кредиту можно описать как начисление процентов на процент.
При использовании такой схемы выплаты кредита, процентный платеж в каждом следующем месяце добавляется к сумме общего займа, а следующий начисляется уже исходя из этой, увеличенной суммы первоначального займа. Формула сложных процентов по кредиту выглядит примерно так:
Б = С (1+ К)Т
В данной формуле Б – это конечная сумма, которую заемщик обязуется выплатить банку по окончанию срока действия кредитного договора. С – первоначальная сумма займа, которую заемщик берет в кредит у банка. К это ставка процентов по выбранному кредиту, установленная банком, а Т – это общая продолжительность периода, на который был взят кредит, в годах.
Сложным процентом принято называть эффект, когда проценты прибыли прибавляются к основной сумме и в дальнейшем сами участвуют в создании новой прибыли.
Формула сложного процента - это формула, по которой рассчитывается итоговая сумма с учётом капитализации (начислении процентов).
Простой расчет сложных процентов
Чтобы лучше усвоить расчет сложных процентов, давайте разберём пример.
Представим, что вы положили 10 000 руб в банк под 10 процентов годовых.
Через год на вашем банковском счету будет лежать сумма SUM = 10000 + 10000*10% = 11 000 руб.
Ваша прибыль - 1000 рублей.
Вы решили оставить 11 000 руб на второй год в банке под те же 10 процентов.
Через 2 года в банке накопится 11000 + 11000*10% = 12 100 руб.
Прибыль за первый год (1000 рублей) прибавилась к основной сумме (10000р) и на второй год уже сама генерировала новую прибыль. Тогда на 3-й год прибыль за 2-й год прибавится к основной сумме и будет сама генерировать новую прибыль. И так далее.
Этот эффект и получил название сложный процент.
Когда вся прибыль прибавляется к основной сумме и в дальнейшем уже сама производит новую прибыль.
Формула сложного процента:
SUM = X * (1 + %) n
где
SUM - конечная сумма;
X - начальная сумма;
% - процентная ставка, процентов годовых /100;
n - количество периодов, лет (месяцев, кварталов).
Расчет сложных процентов: Пример 1.
Вы положили 50 000 руб в банк под 10% годовых на 5 лет. Какая сумма будет у вас через 5 лет? Рассчитаем по формуле сложного процента:
SUM = 50000 * (1 + 10/100) 5 = 80 525, 5 руб.
Сложный процент может использоваться, когда вы открываете срочный вклад в банке. По условиям банковского договора процент может начисляться например ежеквартально, либо ежемесячно.
Расчет сложных процентов: Пример 2.
Рассчитаем, какая будет конечная сумма, если вы положили 10 000 руб на 12 месяцев под 10% годовых с ежемесячным начислением процентов.
SUM = 10000 * (1+10/100/12) 12 = 11047,13 руб.
Прибыль составила:
ПРИБЫЛЬ = 11047,13 - 10000 = 1047,13 руб
Доходность составила (в процентах годовых):
% = 1047,13 / 10000 = 10,47 %
То есть при ежемесячном начислении процентов доходность оказывается больше, чем при начислении процентов один раз за весь период.
Если вы не снимаете прибыль, тогда начинает работать сложный процент.
Формула сложного процента для банковских вкладов
На самом деле формула сложного процента применительно к банковским вкладам несколько сложнее, чем описана выше. Процентная ставка для вклада (%) рассчитывается так:
% = p * d / y
где
p - процентная ставка (процентов годовых / 100) по вкладу,
например, если ставка 10,5%, то p = 10,5 / 100 = 0,105 ;
d - период (количество дней), по итогам которого происходит капитализация (начисляются проценты),
например, если капитализация ежемесячная, то d = 30 дней
если капитализация раз в 3 месяца, то d = 90 дней;
y - количество дней в календарном году (365 или 366).
То есть можно рассчитывать процентную ставку для различных периодов вклада.
Формула сложного процента для банковских вкладов выглядит так:
SUM = X * (1 + p*d/y) n
При расчете сложных процентов нужно принимать во внимание тот факт, что со временем наращивание денег превращается в лавину. В этом привлекательность сложных процентов. Представьте себе маленький снежный комок размером с кулак, который начал катиться со снежной горы. Пока комок катится, снег налипает на него со всех сторон и к подножию прилетит огромный снежный камень. Также и со сложным процентом. Поначалу прибавка, создаваемая сложным процентом, почти незаметна. Но через какое-то время она показывает себя во всей красе. Наглядно это можно увидеть на примере ниже.
Расчет сложных процентов: Пример 3.
Рассмотрим 2 варианта:
1. Простой процент. Вы инвестировали 50 000 руб на 15 лет под 20%. Дополнительных взносов нет. Всю прибыль вы снимаете.
2. Сложный процент. Вы инвестировали 50 000 руб на 15 лет под 20%. Дополнительных взносов нет. Каждый год проценты прибыли прибавляются к основной сумме.
В дополнение к вышеизложенной статье, хотела бы добавить еще несколько полезных формул расчета разного вида процентов.
Начну с простого, но не менее полезного:
1). Формула расчета доли в процентном отношении.
Задано два числа: X1 и X2. Необходимо определить, какую долю в процентном отношении составляет число Х1 от Х2.
У = X1 / X2 * 100.
2). Формула расчета процента от числа.
Задано число X2. Необходимо вычислить число X1, составляющее заданный процент Y от Х2.
Х1 = Х2 * Y / 100.
3). Формула увеличения числа на заданный процент (сумма с НДС).
Задано число X1. Надо вычислить число X2, которое больше числа X1 на заданный процент Y. Используя формулу расчета процента от числа, получаем:
X2= X1 * (1 + Y / 100).
4). Формула вычисления исходной суммы (сумма без НДС).
Задано число X1, равное некому исходному числу X2 с прибавленным процентом Y. Надо вычислить число X2. Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС. Обозначим y = Y / 100, тогда:
X1= X2 + y * X2.
или
X1= X2 * (1 + y).
тогда
X2= X1 / (1 +y).
5). Формула уменьшения числа на заданный процент.
Задано число X1. Необходимо вычислить число X2, которое меньше числа X1 на заданный процент Y. Используя формулу расчета процента от числа, получаем:
X2= X1 - X1 * Y / 100.
либо же
X2= X1 * (1 - Y / 100).
6). Расчет процентов на банковский депозит. Формула расчета простых процентов.
Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.
Y = S + (S*Z*d/D)/100
Yp = (S*Z*d/D)/100
Где:
Y - сумма банковского депозита с процентами,
Yp - сумма процентов (доход),
S - первоначальная сумма (капитал),
Z - годовая процентная ставка,
d - количество дней начисления процентов по привлеченному вкладу,
D - количество дней в календарном году (365 или 366).
7). Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.
Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.
X = S * (1 + P*d/D/100)N
Где:
Y - годовая процентная ставка,
При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):
Sp = X - S = S * (1 + Y*d/D/100)N - S
или
Sp = S * ((1 + Y*d/D/100)N - 1)
8). Еще одна формула сложных процентов.
Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.
X = S * (1 + Y/100)N
Где:
X - сумма депозита с процентами,
S - сумма депозита (капитал),
Y - процентная ставка,
N - число периодов начисления процентов.
Большая часть кредитов сегодня погашается с помощью аннуитентных платежей, одинаковых ежемесячных сумм. Аналогично и на вклады осуществляется стабильное начисление процента. Одна и та же сумма каждый месяц. В банковской практике такое начисление процентов называется простым. Таким образом, в случае с кредитом ежемесячно его владелец должен будет погашать не только часть основной суммы, но и насчитанный процент за ее пользование. Такой формат партнерства является законным. Совсем другое дело, если с заемщика снимается сложный процент. Формула его расчета будет рассмотрена ниже.
Против закона, или Как банки наживаются за счет неопытных заемщиков?
Многим будет интересно узнать, но начисление сложного процента на кредит - это незаконно. Такой формат сотрудничества делает банковский продукт весьма прибыльным для финансовых институтов и полностью убыточным для клиента. Незаконный формат начисления процента осуществляется тогда, когда процентная ставка на протяжении всего срока кредитования систематически меняется. Заметить неправомерные действия банка возможно только при формировании просрочки, которой по факту быть не должно. В ходе судебных разбирательств можно доказать, что банк начислял не совсем правильный процент.
Так что же это - сложные проценты по кредиту и вкладу?
Формула сложных процентов для кредита позволит понять, что начисление осуществляется не только на основную сумму долга, но и на сумму средств, которая была образована после начисления банковского процента. Говоря проще, сложные проценты представляют собой проценты, которые начисляются сами на себя. В банковской практике их еще называют двойными процентами.
Люди часто сталкиваются с ситуациями, когда их небольшой долг превращается в кругленькую сумму средств. Суть проблемы в том, что после того как финансовый институт зафиксирует просрочку, он присоединит к сумме долга процент. Следующее начисление будет осуществлено на основную сумму долга плюс насчитанный ранее на нее процент. Долг перед банком увеличивается в геометрической прогрессии. Невыгодные сложные проценты для заемщика становятся настоящим преимуществом для вкладчиков, так как аналогично увеличению долга они обеспечивают быстрый прирост прибыли.
Сложный процент: формула для заемщиков
В финансовой практике весьма распространена схема расчета сложных процентов. Она актуальна в том случае, если процентные средства не выплачиваются каждый месяц, а прибавляются к размеру основной задолженности, которая становится новой базой для начислений банка. Если ссуда имеет продолжительность от года и более, заемщик может столкнуться со своей неплатежеспособностью.
FV = PV + % = PV + PV * % = PV * (1 + %)
Для подсчета переплаты за два периода начисления можно использовать следующую формулу:
FV = (PV + %) * (% + 1) = PV * (1 + %) * (1 + %) = PV * (1 + %) 2
FV = PV * (1 + %) N = PV * Кн, где:
- FV - наращенная сумма долга.
- PV - первичная сумма долга.
- % - ставка за период начисления.
- N - количество периодов начисления.
- Кн - коэффициент наращения сложных процентов.
Наращивание простых и сложных процентов
Формулы простых и сложных процентов позволяют определить объемы переплаты и предварительно оценить выгоды банковского продукта. При краткосрочных займах простые проценты оказываются более выгодными для банков. Однако если срок кредитования имеет среднесрочные или долгосрочные тенденции, разница может быть весьма ощутима для клиента. Отсюда выплывают следующие закономерности:
Независимо от процентной ставки при:
- 0 < N < 1 , то (1 + N * %) > (1 + %) N .
- N > 1, то (1 + N * %) < (1 + %) N .
- N = 1, то (1 + N * %) = (1 + %) N .
Как видим, финансовые институты, выдающие кредиты, получают больше выгоды от простых процентов при начислении всего дохода один раз к окончанию всего срока кредитования. Сложный процент приносит выгоды только если кредитование осуществляется не менее года. Оба типа процентов дают идентичную прибыль банку, если кредит оформлен на срок в один год, а проценты начисляются один раз по окончании партнерства.
Формула сложных процентов по вкладам
Сложные проценты используются банками не только для получения выгоды от кредитования. Формат начислений применяется и при оформлении вкладов, тем самым определяя выгоды для инвесторов. Итоговую сумму вклада можно рассчитать используя следующую формулу:
S = D * (1 + % * i / Y / 100) * N
Для расчета прибыли по вкладу эффективно использовать другие формулы:
Sp = S - D = D * (1 + % * i / Y / 100) * N - D
Sp = D * ((1 + % * i / Y / 100) * N - 1)
Для сравнения прибыльности по вкладам, которые оформлены на разный период и для каждого из которых свойственна своя ставка сложных процентов, формула будет выглядеть иначе. Она позволит определить процент, который получит инвестор после капитализации.
P1 = 100 * ((1 + % * i / Y / 100) * N - 1), где:
- D - размер первичного вклада.
- S - общая сумма вклада с начисленными процентами.
- % - процентная ставка.
- Sp - доход.
- N - количество начислений.
- i - количество дней по начислению процентов.
- Y - дни в году.
Итоговая ставка банка, рассчитанная с учетом капитализации процента, называется эффективной. Финансовые институты не учитывают день окончания партнерства, если используют сложную схему начисления прибыли.
Пример расчета сложных начислений по вкладу
Формула начисления сложных процентов помогает каждому вкладчику предварительно оценить объем своего дохода. Попробуем рассчитать общий объем вклада и отдельно полученную по нему прибыль, если размер первичной инвестиции составлял 100 000 рублей на период 90 дней со ставкой 16 %.
S = 100000 + (100000 * 16 % * 90 / 365)
Sp = 100000 * 16 % * 90 / 365
На что обращать внимание?
Для каждого формата партнерства с банком нужно использовать индивидуальный вариант расчета. В зависимости от продолжительности вклада и периодичности выплат будет формироваться итоговый сложный процент. Формула его расчета будет изменяться от случая к случаю. Чтобы не допустить ошибок и выбрать максимально выгодную программу депозитов, нужно обратиться к экспертам. Помочь в данном вопросе могут представители финансового института. Они хоть и не имеют права рекомендовать вклады, но обязаны предоставить по просьбе полную схему расчета процентов по ним.
Капитализация при инвестировании в валютные рынки
Капитализация процентов встречается не только в банке, но и на валютном рынке «Форекс». Инвесторы, отдающие свои капиталы в доверительное управление, получают возможность следить за увеличением своих депозитов в геометрической прогрессии. Специфика данного вида инвестирования в том, что при получении прибыли она не снимается сразу, а распределяется по окончании торгового периода. На протяжении торгового периода, который может составлять неделю, месяц и даже несколько месяцев, будет автоматически проводиться начисление сложных процентов в силу специфики торговли. Для точного расчета дохода не подойдет формула сложных процентов по вкладам. Причина в отсутствии стабильной ставки. Прибыль определяется качеством торговли управляющего, его стратегией и политикой мани-менеджмента, прочими параметрами торговой системы.
Инвестору на заметку
Для расчета дохода при капитализации используется не одна формула сложных процентов для кредита и депозита, а несколько. Это обусловлено разными условиями партнерства с банком. Начисление процента на процент может проводиться каждый день, что является большой редкостью, каждую неделю, каждый месяц и даже каждый год (при долгосрочных инвестициях).
Оптимальным вариантом можно считать депозит с ежемесячной капитализацией, найти его несложно, а выгоды он принесет достаточно большие. Начисление процента на процент является тем выгодней для инвестора, чем чаще осуществляется начисление. Несмотря на более низкие процентные ставки по продуктам банка с капитализацией, прибыль в конечном счете получается на порядок больше, нежели при простой схеме начисления.
Еще один интересный момент заключается в том, что чем дольше вклад будет находиться в банке, тем быстрее он будет расти. Увеличение дохода будет происходить благодаря присоединению начислений к базовому объему средств. Если в течение года преимущества капитализации будут не так ощутимы, спустя десяток лет сомнения в преимуществах этого банковского предложения отпадут. Таким образом, выбирая меньшую процентную ставку, но останавливаясь на капитализации, можно получить более высокую прибыль по вкладу.
Сложные проценты в EXCEL. Постоянная ставка
Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.
Немного теории
Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.
Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по простым и сложным процентам.
При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования простых процентов изменяется в каждом периоде начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».
В файле примера приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.
В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов читайте здесь .
Начисление процентов 1 раз в год
Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)^2, через n лет – P*(1+i)^n. Таким образом, получим формулу наращения для сложных процентов: S = Р*(1+i)^n где S - наращенная сумма, i - годовая ставка, n - срок ссуды в годах, (1+ i)^n - множитель наращения.
Начисление процентов несколько раз в год
В рассмотренном выше случае капитализация производится 1 раз в год. При капитализации m раз в год формула наращения для сложных процентов выглядит так: S = Р*(1+i/m)^(n*m) i/m – это ставка за период. На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).
В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.
Рассмотрим задачу : Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.
Способ 1. Вычисление с помощью таблицы с формулами Это самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода. В файле примера это реализовано на листе Постоянная ставка .
За первый период будут начислены проценты в сумме =20000*(15%/12) , т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес. При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.
Способ 2. Вычисление с помощью формулы Наращенных процентов Подставим в формулу наращенной суммы S = Р*(1+i )^n значения из задачи. S = 20000*(1+15%/12)^12 Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации). Другой вариант записи формулы – через функцию СТЕПЕНЬ() =20000*СТЕПЕНЬ(1+15%/12; 12)
Способ 3. Вычисление с помощью функции БС(). Функция БС() позволяет определить будущую стоимость инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е. она предназначена прежде всего для расчетов в случае аннуитетных платежей . Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов. =-БС(15%/12;12;;20000)
Или так =-БС(15%/12;12;0;20000;0)
Примечание . В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов используется функция БЗРАСПИС() .
Определяем сумму начисленных процентов
Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.
Сумма начисленных процентов I равна разности между величиной наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i )^n, получим: I = S – P= Р*(1+i)^n – Р=P*((1+i)^n –1)=150000*((1+12%)^5-1) Результат: 114 351,25р. Для сравнения: начисление по простой ставке даст результат 90 000р. (см. файл примера ).
Определяем Срок долга
Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится? Логарифмируя обе части уравнения S = Р*(1+i)^n, решим его относительно неизвестного параметра n.
В файле примера приведено решение, ответ 6,12 лет.
Вычисляем ставку сложных процентов
Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?
В файле примера приведено решение, ответ 14,87%.
Примечание . Об эффективной ставке процентов читайте в этой статье .
Учет (дисконтирование) по сложным процентам
Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход. Рассмотрим 2 вида учета: математический и банковский.
Математический учет . В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i )^n Величину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S. Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S - P называется дисконтом.
Пример . Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых. Другими словами, известно: n = 7 лет, S = 2 000 000 руб., i = 15% .
Решение. P = 2000000/(1+15% )^7 Значение текущей стоимости будет меньше, т.к. открыв сегодня вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.
Тот же результат можно получить с помощью формулы =ПС(15%;7;;-2000000;1) Функция ПС() возвращает приведенную (к текущему моменту) стоимость инвестиции и рассмотрена здесь .
Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле: Р = S*(1- dсл )^n где dcл - сложная годовая учетная ставка.
При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.
Сравнив формулу наращения для сложных процентов S = Р*(1+i )^n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл )^n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи Начисление процентов несколько раз в год .
Формула сложного процента в Excel
Сложный процент в формуле Excel
Сложный процент представляет собой прибавку процентов к основной сумме кредита или депозита, или, можно сказать, проценты по процентам. Это результат реинвестирования процентов, а не их выплаты, так что проценты в следующем периоде начисляются на основную сумму плюс ранее накопленные проценты.
В то время как простой интерес рассчитывается только на основную сумму и (в отличие от сложных процентов) не на основную сумму плюс проценты, заработанные или понесенные в предыдущем периоде.
Общая накопленная стоимость, включая основную сумму P плюс начисленные проценты I, определяется по формуле:
Где,
- п это первоначальная основная сумма
- П’ это новая основная сумма
- п это частота начисления процентов
- р является номинальная годовая процентная ставка
- т – это общий срок выплаты процентов (выражается с использованием тех же единиц времени, что и r, обычно в годах).
Как рассчитать сложный процент в формуле Excel? (с примерами)
Давайте поймем то же самое, используя несколько примеров формулы сложного процента в Excel.
Пример №1 – Использование формулы Excel для расчета сложных процентов
Предположим, у нас есть следующая информация для расчета сложных процентов в Excel.
Теперь, когда мы описали формулу выше, мы реализуем то же самое в MS Excel, используя ссылки на ячейки в excel и различные операторы.
Шаг 1 – Поскольку C2 ячейка содержит основную сумму (мы также можем назвать ее приведенной стоимостью). Нам нужно умножьте это значение на процентную ставку.
Шаг 2 – В нашем случае проценты должны быть увеличены ежеквартальный (C5) поэтому нам нужно разделить годовую процентную ставку на ячейку C5
Шаг 3 – Поскольку проценты начисляются четыре раза в год, нам нужно указать ячейку, в которой указано количество лет, чтобы мы могли умножить 4 на количество лет. Вот почему формула будет такой:
Шаг 4 – После нажатия кнопки Enter мы получим результат как Rs. 15764,18 как будущая стоимость со сложными процентами.
Это похоже на калькулятор сложных процентов в Excel. Мы можем изменить значение для годовой процентной ставки, количество лет, и Периоды накопления в год как показано ниже.
Пример № 2 – Использование таблицы расчета сложных процентов в Excel
Предположим, у нас есть следующая информация для расчета сложных процентов в формате таблицы Excel (систематически).
Шаг 1 – Нам нужно назвать ячейку E3 как ‘Ставка’ выбрав ячейку и изменив имя с помощью Поле имени.
Шаг 2 – У нас есть основная стоимость или приведенная стоимость как 15000, г. и годовая процентная ставка 5%. Чтобы рассчитать стоимость инвестиций в конце 1 квартала, мы добавим 5% / 4, т. Е. 1,25% процентов к основной стоимости.
Результат показан ниже:
Шаг 3 – Нам просто нужно перетащить формулу до ячейки C6, выбрав диапазон C3: C6 и нажимая Ctrl + D.
В будущее значение через четыре квартала будет Rs. 15764,18.
Пример № 3 – Сложный процент с использованием формулы Excel FVSCHEDULE
Предположим, у нас есть следующая информация для расчета сложных процентов в Excel.
Мы будем использовать FVSCHEDULE функция для расчета будущей стоимости. FVSCHEDULE Формула возвращает будущую стоимость первоначальной основной суммы после применения ряда сложных процентных ставок.
Чтобы сделать то же самое, выполните следующие действия:
Шаг 1 – Мы начнем запись функции FVSCHEDULE в ячейку B6. Функция принимает два аргумента: основной и расписание.
- Для главный, нам нужно указать сумму, в которую мы инвестируем.
- Для график, нам нужно предоставить список процентных ставок с запятыми в фигурных скобках, чтобы вычислить значение с учетом сложных процентов.
Шаг 2 – За ‘главный’ мы предоставим ссылку на ячейку B1, а для ‘график,’ мы укажем 0,0125, поскольку это значение, которое мы получим, когда разделим 5% на 4.
Результат показан ниже:
Теперь применим формулу FVSCHEDULE в Excel.
Шаг 3 – После нажатия кнопки Enter получаем рупий. 15764,18 как будущая стоимость со сложными процентами в Excel.
Пример №4 – Сложный процент с использованием формулы Excel FV
Предположим, у нас есть следующие данные для расчета сложных процентов в Excel.
Мы будем использовать Формула FV excel для расчета сложных процентов.
FV функция (обозначает Будущая стоимость) возвращает будущую стоимость инвестиций на основе периодических постоянных платежей и постоянной процентной ставки.
Синтаксис функции FV:
Аргумент функции FV:
- Ставка: Ставка – это постоянная процентная ставка за период в аннуитете.
- Nper: Nper обозначает общее количество периодов в аннуитете.
- PMT: PMT означает оплату. Это указывает на сумму, которую мы будем добавлять к аннуитету каждый период. Если мы не указываем это значение, то обязательно указать PV.
- PV: PV означает текущую стоимость. Это сумма, в которую мы инвестируем. Поскольку эта сумма уходит из нашего кармана, поэтому условно эта сумма указывается со знаком минус.
- Тип: Это необязательный аргумент. Нам нужно указать 0, если сумма добавляется к инвестиции в конце периода, или единицу, если сумма добавляется к инвестиции в начале периода.
Мы должны упомянуть аргумент PMT или PV.
Мы укажем ставка в виде ‘Годовая процентная ставка (B2) / Годовые периоды начисления сложных процентов (B4)’.
Нам нужно указать кпер в виде «Срок (лет) * Периоды начисления в год».
Поскольку мы не будем добавлять какую-либо дополнительную сумму к основной стоимости между инвестиционными периодами, поэтому мы укажем «0» для ‘pmt.’
Поскольку мы опустили значение для ‘pmt’ и мы инвестируем рупий. 15000 в качестве основного (приведенная стоимость), мы дадим ссылку на ячейку B1 со знаком минус для “PV.”
После нажатия на кнопку Enter получаем Rs. 15764,18 как будущая стоимость со сложными процентами.
Что нужно помнить о формуле сложного процента в Excel
- Нам нужно ввести процентную ставку в процентах (4%) или в десятичной форме (0,04).
- В виде ‘PMT ‘ и “PV” аргумент в Функция FV это оттоки в реальном выражении, их необходимо указать в отрицательной форме (со знаком минус (-)).
- Функция FV дает # ЗНАЧ! Ошибка, если в качестве аргумента указано любое нечисловое значение.
- Мы должны упомянуть либо ГУП или же PV аргумент в Функция FV.
УЗНАТЬ БОЛЬШЕ >>
Сложные проценты в EXCEL. Переменная ставка. Примеры и описание
.