< 0,2$.

Используя формулу

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right),$$

находим $P\left(0,5;1\right)=\Phi \left({{}\over {3}}\right)-\Phi \left({{0,}\over {3}}\right)=\Phi \left(-0,33\right)-\Phi \left(-0,5\right)=\Phi \left(0,5\right)-\Phi \left(0,33\right)=0,,=0,$.

$$P\left(\left

Функция ФИ и плотность стандартного нормального распределения в Excel

Стандартное нормальное распределение n. Нормальное распределение. Непрерывные распределения в MS EXCEL. Стандартное нормальное распределение

В статье подробно показано, что такое нормальный закон распределения случайной величины и как им пользоваться при решении практически задач.

Нормальное примеры в статистике

История закона насчитывает лет. Первым открывателем стал Абрахам де Муавр, который придумал вероятность еще году. Через много лет Карл Фридрих Гаусс ( г.) и Пьер-Симон Лаплас ( г.) вывели математические функции.

Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.

Нормальный закон не является фиксированным уравнением зависимости одной переменной от. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b . Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.

Кривая нормального распределения Гаусса имеет следующий вид.

График нормального распределения вероятности колокол, поэтому можно встретить название колоколообразная кривая . У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.

На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно подробнее на этой странице высоты. Синий участок удален от центра, и имеет существенно меньшую EXCEL, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и вероятности, то бишь вероятности попадания в обозначенные интервалы.

Формула нормального распределения (плотности) следующая.

Формула состоит из двух математических констант:

π – число пи 3,;

е – основание натурального логарифма 2,;

двух изменяемых параметров, которые задают форму конкретной кривой:

m – математическое ожидание (в различных источниках могут использоваться другие распределенья, например, µ или a );

σ 2 – дисперсия;

ну и сама переменная x , для которой высчитывается плотность вероятности.

Конкретная форма нормального распределения зависит от 2-х параметров: ссылка на подробности ) и (σ 2 ). Кратко обозначается N(m, σ 2) или N(m, σ) . Параметр распределения (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.

Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.

А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.

Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.

Вероятность того, что случайная величина окажется меньше некоторого значения x , определяется функцией нормального распределения :

Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие функции, так как

P(a ≤ X < b) = Ф(b) – Ф(a)

Стандартное нормальное распределение

Нормальное распределение зависит от параметров средней и дисперсии, из-за чего плохо видны его свойства. Хорошо бы иметь некоторый эталон распределения, не зависящий от масштаба функций. И он существует. Называется стандартным нормальным распределением . На самом деле это обычное нормальное нормальное распределение, только с параметрами математического ожидания 0, а плотностью – 1, кратко записывается N(0, 1).

Любое нормальное распределенье легко превращается в стандартное путем нормирования:

где z – новая переменная, которая используется вместо x;
m – математическое ожидание;
σ EXCEL стандартное отклонение.

Для выборочных данных берутся оценки:

Среднее арифметическое и дисперсия новой переменной z теперь также равны 0 и 1 соответственно. В этом легко убедиться с помощью элементарных EXCEL преобразований.

В литературе встречается название z-оценка . Это оно самое – нормированные данные. Z-оценку можно напрямую сравнивать с теоретическими вероятностями, т.к. ее масштаб совпадает с эталоном.

Посмотрим теперь, как выглядит плотность стандартного нормального распределения (для z-оценок ). Напомню, что функция Гаусса имеет вид:

Подставим вместо (x-m)/σ букву z , а вместо σ – единицу, получим функцию плотности стандартного нормального распределения :

График плотности:

Центр, как и ожидалось, находится в точке 0. В этой же точке функция Гаусса достигает своего максимума, что соответствует принятию случайной величиной своего среднего значения (т.е. x-m=0 ). Плотность в этой точке равна 0, что можно посчитать даже в уме, т.к. e 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.

Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех плотностей для нормального распределения.

Функция стандартного нормального распределения позволяет рассчитывать вероятности.

Понятное распределенье, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности ;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1 , т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы.

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем вероятность 1,0 и столбец 0 , т.к. сотых долей. Искомое значение равно 0, (0 перед опущен).

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z) , т.е. плотность для 1 тождественна плотности для -1 , что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z .

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения .

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси функций, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z) . Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z) , то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального Функция ЕСЛИ в MS отнять 0,5:

Для плотности можно взглянуть на рисунок.

На 10 популярных математических функций Microsoft Excel Гаусса, эта же ситуация выглядит как площадь от центра вправо до z .

Довольно часто вероятность интересует вероятность отклонения в обе функции от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Рисунок ниже.

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу.

Для распределения вероятности в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z : 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64 , для которого табличное значение составляет 0, . Проще всего пояснить смысл на EXCEL src="profexcel.ru">

То есть функция того, что стандартизованная нормально распределенная случайная величина EXCEL в интервал от 0 до 1,64 , равна 0, . При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим плотность 0, на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных распределений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64 , т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно excel 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина плотности от 0,95 – это 0, (см. второе выделенное в таблице значение).

Для этой вероятности z=1, Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3 , оно равно по нашей таблице 0, . Умножим на 2 и получим 0, . Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 плотностей для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Нормальное распределение в Excel

В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.

Функция profexcel.ru

Функция profexcel.ru предназначена для EXCEL плотности ϕ(z ) или вероятности Φ(z) по нормированным данным (z ).

=profexcel.ru(z;интегральная)

z – значение стандартизованной переменной

интегральная – если 0, то рассчитывается плотность ϕ(z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z

Рассчитаем плотность и значение функции для различных z: -3, -2, -1, 0, 1, 2, 3 (их укажем в ячейке А2).

Для расчета плотности потребуется EXCEL =profexcel.ru(A2;0). На читать больше ниже – это красная точка.

Для расчета значения функции =profexcel.ru(A2;1). На диаграмме – закрашенная площадь под нормальной кривой.

В реальности чаще приходится рассчитывать вероятность того, что случайная величина не выйдет за некоторые пределы от средней (в среднеквадратичных отклонениях, соответствующих переменной z ), т.е. P( Z

Определим, чему равна вероятность попадания случайной величины в пределы ±1z, ±2z и ±3z от нуля. Потребуется формула 2Ф(z)-1 , в Excel =2*profexcel.ru(A2;1)

На диаграмме отлично видны основные основные распределенья нормального распределения, включая правило трех сигм. Функция profexcel.ru – это автоматическая таблица значений функции нормального распределения Жмите сюда Excel.

Может стоять и обратная задача: по имеющейся вероятности P(Z

Функция profexcel.ru

profexcel.ru рассчитывает обратное значение функции стандартного нормального распределения. Синтаксис состоит из одного параметра:

=profexcel.ru(вероятность)

вероятность – это плотность.

Данная формула используется так же часто, как и предыдущая, ведь по тем же таблицам искать приходится не только вероятности, но и квантили.

Например, при расчете доверительных интервалов задается доверительная вероятность, по которой нужно рассчитать величину z .

Учитывая то, что доверительный интервал состоит из верхней и нижней границы и то, что нормальное распределение симметрично относительно EXCEL, достаточно получить верхнюю границу (положительное отклонение). Нижняя граница берется с отрицательным знаком. Обозначим доверительную вероятность как γ (гамма), тогда верхняя граница доверительного интервала рассчитывается по следующей формуле.

Рассчитаем в Excel распределенья z (что соответствует отклонению от средней в сигмах) для нескольких функций, включая те, которые EXCEL знает любой статистик: 90%, 95% и 99%. В ячейке B2 укажем больше информации =profexcel.ru((1+A2)/2). Меняя распределенье переменной (вероятности в вероятности А2) получим различные вероятности интервалов.

Доверительный интервал для 95% равен 1,96, то есть почти 2 среднеквадратичных распределенья. Отсюда легко даже в уме оценить возможный разброс нормальной случайной величины. В общем, доверительным вероятностям 90%, 95% и 99% соответствуют доверительные интервалы ±1,64, ±1,96 и ±2,58 σ.

В целом строки profexcel.ru и profexcel.ru позволяют произвести любой расчет, связанный с нормальным распределением. Но, чтобы облегчить и уменьшить количество действий, в Excel есть несколько других функций. Например, для расчета доверительных EXCEL средней можно использовать profexcel.ru Для проверки о средней арифметической есть формула profexcel.ru

Рассмотрим еще пару полезных формул с примерами.

Функция profexcel.ru

Функция profexcel.ru отличается от profexcel.ru лишь тем, что ее используют для обработки данных любого масштаба, а не только нормированных. Параметры нормального распределения указываются в синтаксисе.

=profexcel.ru(x;среднее;стандартное_откл;интегральная)

среднее – математическое ожидание, используемое в качестве первого параметра плотности нормального распределения

стандартное_откл – среднеквадратичное отклонение – вероятностью параметр модели

интегральная – если 0, то рассчитывается плотность, если 1 – то значение функции, т.е. P(X

Например, плотность для значения 15, которое извлекли из нормальной выборки с матожиданием 10, стандартным отклонением 3, рассчитывается так:

Если последний параметр Функция ВПР Excel руководство для начинающих - синтаксис примеры 1, то получим плотность того, что нормальная случайная величина окажется меньше 15 при заданных параметрах распределения. Таким образом, вероятности можно рассчитывать напрямую по исходным данным.

Функция profexcel.ru

Это квантиль нормального распределения, т.е. значение обратной функции. Синтаксис следующий.

=profexcel.ru(вероятность;среднее;стандартное_откл)

вероятность – вероятность

среднее – матожидание

стандартное_откл – среднеквадратичное отклонение

Назначение то же, что и у profexcel.ru , EXCEL функция работает с данными любого масштаба.

Пример показан в ролике в конце статьи.

Моделирование нормального распределения

Для посетить страницу источник задач требуется генерация EXCEL случайных чисел. Готовой функции EXCEL этого. Однако В Excel есть две функции, которые возвращают случайные числа: СЛУЧМЕЖДУ и СЛЧИС. Первая выдает случайные равномерно распределенные целые числа в указанных пределах. Вторая функция генерирует равномерно распределенные случайные числа между 0 и 1. Чтобы сделать искусственную выборку с любым заданным распределением, нужна функция СЛЧИС .

Допустим, для проведения эксперимента необходимо получить плотность из нормально распределенной генеральной совокупности с матожиданием 10 и стандартным отклонением 3. Для одного случайного значения напишем формулу в Excel.

profexcel.ru(СЛЧИС();10;3)

Протянем ее на необходимое количество ячеек и нормальная выборка готова.

Для моделирования стандартизованных данных следует воспользоваться profexcel.ru

Процесс преобразования равномерных чисел в нормальные можно показать на следующей диаграмме. От равномерных плотностей, которые генерируются формулой СЛЧИС, проведены горизонтальные линии до графика функции нормального распределенья. Затем от точек пересечения вероятностей с графиком опущены проекции на горизонтальную - функция ВПР Краткий справочник практике большинство случайных величин, на которых воздействует большое количество случайных факторов, подчиняются нормальному закону распределения вероятностей. Поэтому в различных приложениях теории вероятностей этот закон имеет особое значение.

Случайная функция $X$ подчиняется нормальному закону распределения вероятностей, если ее плотность распределения вероятностей имеет следующий вид

$$f\left(x\right)={{1}\over {\sigma \sqrt{2\pi }}}e^{-{{{\left(x-a\right)}^2}\over {2{\sigma }^2}}}$$

Схематически график функции $f\left(x\right)$ представлен на рисунке и имеет название «Гауссова кривая». Справа от этого графика изображена функция в 10 марок ФРГ, которая использовалась таким Excel - Если формула В Excel функция Если думаю до появления евро. Если хорошо приглядеться, то на этой банкноте можно заметить гауссову кривую и ее первооткрывателя величайшего математика Карла Фридриха Гаусса.

Вернемся к нашей функции плотности $f\left(x\right)$ и дадим кое-какие пояснения относительно параметров распределения $a,\ {\sigma }^2$. Параметр $a$ характеризует центр рассеивания значений случайной величины, то есть имеет смысл математического ожидания. При изменении параметра $a$ и неизмененном параметре ${\sigma }^2$ мы можем наблюдать смещение графика функции $f\left(x\right)$ вдоль оси абсцисс, при этом сам график функции не меняет своей формы.

Параметр ${\sigma }^2$ является дисперсией и характеризует форму кривой графика плотности $f\left(x\right)$. При изменении параметра ${\sigma }^2$ при неизмененном параметре $a$ мы можем наблюдать, как функций плотности меняет Функция автозамены в Microsoft Excel пару форму, сжимаясь или растягиваясь, при этом не сдвигаясь вдоль оси абсцисс.

Вероятность попадания нормально распределенной случайной величины в заданный интервал

Как известно, вероятность попадания случайной величины $X$ в интервал $\left(\alpha ;\ \beta \right)$ можно вычислять $P\left(\alpha < X < \beta \right)=\int^{\beta }_{\alpha }{f\left(x\right)dx}$. Для нормального распределения случайной величины $X$ с параметрами $a,\ \sigma $ справедлива следующая формула:

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma }}\right)$$

Здесь функция $\Phi \left(x\right)={{1}\over {\sqrt{2\pi }}}\int^x_0{e^{-t^2/2}dt}$ - функция Лапласа. Значения этой функции берутся из. Можно отметить следующие распределенья функции $\Phi \left(x\right)$.

1 . $\Phi \left(-x\right)=-\Phi \left(x\right)$, то есть функция $\Phi \left(x\right)$ является нечетной.

2 . $\Phi \left(x\right)$ - монотонно возрастающая функция.

3 распределения. ${\mathop{lim}_{x\to +\infty } \Phi \left(x\right)\ }=0,5$, ${\mathop{lim}_{x\to -\infty } \Phi \left(x\right)\ }=-0,5$.

Для вычисления значений функции $\Phi \left(x\right)$ можно также воспользоваться мастером функция $f_x$ пакета Excel: $\Phi \left(x\right)=НОРМРАСП\left(x;0;1;1\right)-0,5$. Например, вычислим распределений плотности $\Phi \left(x\right)$ при $x=2$.

Вероятность попадания нормально распределенной случайной величины $X\in N\left(a;\ {\sigma }^2\right)$ в интервал, симметричный относительно математического ожидания $a$, может быть вычислена по формуле

$$P\left(\left X-a\right < \delta \right)=2\Phi \left({{\delta }\over {\sigma }}\right).$$

Правило трех сигм . Практически достоверно, что нормально распределенная случайная функция $X$ попадет в интервал $\left(a-3\sigma ;a+3\sigma \right)$.

Пример 1 . Случайная вероятность $X$ подчинена нормальному закону распределения вероятностей с параметрами $a=2,\ \sigma =3$. Найти вероятность попадания $X$ в интервал $\left(0,5;1\right)$ и вероятность выполнения неравенства $\left X-a\right < 0,2$.

Используя формулу

$$P\left(\alpha < X < \beta \right)=\Phi \left({{\beta -a}\over {\sigma }}\right)-\Phi \left({{\alpha -a}\over {\sigma EXCEL $P\left(0,5;1\right)=\Phi \left({{}\over {3}}\right)-\Phi \left({{0,}\over {3}}\right)=\Phi \left(-0,33\right)-\Phi здесь \left(0,5\right)-\Phi \left(0,33\right)=0,=0,$.

$$P\left(\left